File size: 2,166 Bytes
8e019c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507b8cb
 
b30437c
 
507b8cb
8e019c6
 
 
 
 
 
 
 
 
17a8312
 
 
 
 
 
 
 
8e019c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30437c
507b8cb
8e019c6
 
 
 
 
 
 
 
17a8312
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: runningsnake/bert-base-sequence-classification
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# runningsnake/bert-base-sequence-classification

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0825
- Train Accuracy: 0.9766
- Validation Loss: 0.5064
- Validation Accuracy: 0.8431
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## How to use

More information needed

## Limitations and bias

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1377, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.2559     | 0.9057         | 0.5082          | 0.8211              | 0     |
| 0.1004     | 0.9673         | 0.5064          | 0.8431              | 1     |
| 0.0825     | 0.9766         | 0.5064          | 0.8431              | 2     |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.0
- Tokenizers 0.13.3

## Evaluation results

More information needed