|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-tr-cv16.1 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_1 |
|
type: common_voice_16_1 |
|
config: tr |
|
split: test |
|
args: tr |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.41599252148275984 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-tr-cv16.1 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3356 |
|
- Wer: 0.4160 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
## Model Inference |
|
```python |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1").to("cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1") |
|
audio_path = "audio.wav" |
|
|
|
audio_array, sampling_rate = librosa.load(audio_path, sr=16000) |
|
|
|
input_values = processor(audio_array, sampling_rate=sampling_rate).input_values[0] |
|
|
|
input_dict = processor(input_values, return_tensors="pt", padding=True) |
|
|
|
|
|
logits = model(input_dict.input_values).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
prediction = processor.decode(pred_ids[0]) |
|
|
|
print("Prediction:") |
|
print(prediction) |
|
``` |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 5.669 | 0.39 | 400 | 1.2228 | 0.8840 | |
|
| 0.6809 | 0.78 | 800 | 0.6371 | 0.6557 | |
|
| 0.4224 | 1.17 | 1200 | 0.4607 | 0.5226 | |
|
| 0.3151 | 1.56 | 1600 | 0.3671 | 0.4457 | |
|
| 0.2633 | 1.95 | 2000 | 0.3356 | 0.4160 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|