File size: 2,827 Bytes
47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 6ffd2c3 b5d2137 47e0221 b5d2137 47e0221 b5d2137 47e0221 b5d2137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-tr-cv16.1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.41599252148275984
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-tr-cv16.1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3356
- Wer: 0.4160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
## Model Inference
```python
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model = Wav2Vec2ForCTC.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1").to("cpu")
processor = Wav2Vec2Processor.from_pretrained("rumeyskeskn/wav2vec2-large-xls-r-300m-tr-cv16.1")
audio_path = "audio.wav"
audio_array, sampling_rate = librosa.load(audio_path, sr=16000)
input_values = processor(audio_array, sampling_rate=sampling_rate).input_values[0]
input_dict = processor(input_values, return_tensors="pt", padding=True)
logits = model(input_dict.input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
prediction = processor.decode(pred_ids[0])
print("Prediction:")
print(prediction)
```
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.669 | 0.39 | 400 | 1.2228 | 0.8840 |
| 0.6809 | 0.78 | 800 | 0.6371 | 0.6557 |
| 0.4224 | 1.17 | 1200 | 0.4607 | 0.5226 |
| 0.3151 | 1.56 | 1600 | 0.3671 | 0.4457 |
| 0.2633 | 1.95 | 2000 | 0.3356 | 0.4160 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|