File size: 4,285 Bytes
deca15e
742e0e6
deca15e
 
 
05751e7
 
 
 
 
deca15e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742e0e6
05751e7
deca15e
05751e7
 
deca15e
05751e7
 
 
 
 
 
 
 
 
 
 
 
 
 
deca15e
05751e7
deca15e
05751e7
 
 
 
 
 
 
deca15e
05751e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deca15e
 
05751e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deca15e
05751e7
deca15e
05751e7
 
 
 
 
deca15e
 
05751e7
 
 
 
 
deca15e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

---
language: 
  - pt
thumbnail: "Portuguese SBERT for STS"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt
widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
  sentences:
    - "O juíz leu as provas."
    - "O juíz leu o recurso."
    - "O juíz atirou uma pedra."
  example_title: "Example 1"
model-index:
- name: BERTimbau
  results:
  - task:
      name: STS
      type: STS
    metrics:
      - name: Pearson Correlation - assin Dataset
        type: Pearson Correlation
        value: xxxxxx 
      - name: Pearson Correlation - assin2 Dataset
        type: Pearson Correlation
        value: xxxxxx
      - name: Pearson Correlation - stsb_multi_mt pt Dataset
        type: Pearson Correlation
        value: xxxxxx
---

# rufimelo/bert-large-portuguese-cased-sts2

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/bert-large-portuguese-cased-sts derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]

model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-large-v2')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)


```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/bert-large-portuguese-cased-sts')
model = AutoModel.from_pretrained('rufimelo/bert-large-portuguese-cased-sts')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Training

rufimelo/bert-large-portuguese-cased-sts derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large.

It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets.


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```

## Citing & Authors

If you use this work, please cite BERTimbau's work:

```bibtex
@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}
```