File size: 4,507 Bytes
b95afe5
dbb77b9
 
 
dda1e5e
 
 
 
 
dbb77b9
 
 
b95afe5
dda1e5e
b86e966
dda1e5e
 
fa9ca7c
 
dda1e5e
 
 
 
 
 
 
 
 
 
 
 
 
fa9ca7c
dda1e5e
b86e966
dda1e5e
 
 
 
 
 
 
fa9ca7c
dda1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86e966
 
dda1e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb77b9
dda1e5e
c9bc550
 
dbb77b9
 
c9bc550
dbb77b9
 
1dfa3a1
dbb77b9
 
1dfa3a1
dda1e5e
 
 
dbb77b9
1dfa3a1
dbb77b9
dda1e5e
 
 
 
 
dbb77b9
dda1e5e
 
 
 
 
b86e966
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language: 
  - pt
thumbnail: "Portugues SBERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
---

# rufimelo/Legal-SBERTimbau-nli-large

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
It is adapted to the Portuguese legal domain.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]

model = SentenceTransformer('rufimelo/Legal-SBERTimbau-nli-large')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)


```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large')
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Evaluation Results STS

| Model| Dataset |  PearsonCorrelation       |
| ---------------------------------------- | ---------- | ---------- |
| Legal-SBERTimbau-large| Assin | 0.766293861 |
| Legal-SBERTimbau-large| Assin2| 0.823565322 |
| ---------------------------------------- | ---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| Assin | 0.743740222 |
| paraphrase-multilingual-mpnet-base-v2| Assin2| 0.823565322 |
| paraphrase-multilingual-mpnet-base-v2| stsb_multi_mt pt| 0.83999 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641  |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 |
| paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 |

## Training

Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
It was trained for Natural Language Inference (NLI). This was chosen due to the lack of Portuguese available data.
In addition to that, it was submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets.

## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```

## Citing & Authors

If you use this work, please cite BERTimbau's work:

```bibtex
@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}
```