File size: 2,126 Bytes
09b0691 4b2eaa3 09b0691 5eb36f0 df63131 19c60b1 df63131 09b0691 98935f8 09b0691 4b2eaa3 f24afbf 4b2eaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: apache-2.0
tags:
- mergekit
- EmbeddedLLM/Mistral-7B-Merge-14-v0.1
- OpenPipe/mistral-ft-optimized-1218
- NLP
---
# RLM-mini
RLM-mini is a 7.2 Billion parameter model,RLM-mini is designed to provide a robust and versatile natural language processing (NLP) capability, leveraging the strengths of two foundational models. By combining models from different sources, RLM-mini aims to inherit diverse linguistic features and training data nuances, resulting in improved performance across a wide range of NLP tasks. This includes more robust understanding and generation capabilities, especially in handling nuanced and context-heavy queries. The fine-tuning process integrates the best practices and optimizations from both parent models. This ensures that RLM-mini not only maintains high accuracy but also delivers responses more efficiently.
It is base model and requires Fine tuning.
### Two Merged Models
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
# Usage
### Direct Model
``` python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rudrashah/RLM-mini")
model = AutoModelForCausalLM.from_pretrained("rudrashah/RLM-mini")
input_token = tokenizer("How to make Pav Bhaji?", return_tensors="pt")
output = model.generate(**input_token, max_length=250)
output = tokenizer.decode(output[0])
```
### Using Pipeline
``` python
from transformers import AutoTokenizer
import transformers
import torch
model = "rudrashah/RLM-mini"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
``` |