rshrott commited on
Commit
0baf401
1 Parent(s): 826e745

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -2,6 +2,7 @@
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224-in21k
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
  - renovation
@@ -14,7 +15,7 @@ model-index:
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
- name: renovation
18
  type: renovation
19
  config: default
20
  split: validation
@@ -22,7 +23,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.6470588235294118
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # vit-base-renovation
32
 
33
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the renovation dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.2346
36
- - Accuracy: 0.6471
37
 
38
  ## Model description
39
 
 
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224-in21k
4
  tags:
5
+ - image-classification
6
  - generated_from_trainer
7
  datasets:
8
  - renovation
 
15
  name: Image Classification
16
  type: image-classification
17
  dataset:
18
+ name: renovations
19
  type: renovation
20
  config: default
21
  split: validation
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.6666666666666666
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # vit-base-renovation
33
 
34
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the renovations dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.7651
37
+ - Accuracy: 0.6667
38
 
39
  ## Model description
40