File size: 2,886 Bytes
3a759cb d6a8860 3a759cb d6a8860 545e345 d6a8860 3a759cb a86f46f 8bfa53c a86f46f 3a759cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
model-index:
- name: ryan_model3272024
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ryan_model3272024
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the properties dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2636
- Ordinal Mae: 0.5544
- Ordinal Accuracy: 0.5810
- Na Accuracy: 0.7915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Ordinal Mae | Ordinal Accuracy | Na Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:----------------:|:-----------:|
| 0.3524 | 0.05 | 100 | 0.3400 | 0.8905 | 0.3875 | 0.7587 |
| 0.2683 | 0.09 | 200 | 0.3671 | 0.7306 | 0.4892 | 0.6236 |
| 0.3314 | 0.14 | 300 | 0.3450 | 0.8077 | 0.4013 | 0.6969 |
| 0.2747 | 0.19 | 400 | 0.2813 | 0.6106 | 0.5423 | 0.7896 |
| 0.3247 | 0.23 | 500 | 0.3144 | 0.7256 | 0.4525 | 0.7104 |
| 0.3612 | 0.28 | 600 | 0.3075 | 0.6416 | 0.4984 | 0.7587 |
| 0.3031 | 0.32 | 700 | 0.2785 | 0.5720 | 0.5556 | 0.7896 |
| 0.2866 | 0.37 | 800 | 0.2878 | 0.5348 | 0.5776 | 0.7336 |
| 0.2927 | 0.42 | 900 | 0.2689 | 0.5855 | 0.5574 | 0.7973 |
| 0.3003 | 0.46 | 1000 | 0.2636 | 0.5544 | 0.5810 | 0.7915 |
| 0.2522 | 0.51 | 1100 | 0.3009 | 0.5651 | 0.5444 | 0.8571 |
| 0.262 | 0.56 | 1200 | 0.2790 | 0.5203 | 0.5802 | 0.8301 |
| 0.2139 | 0.6 | 1300 | 0.2653 | 0.5626 | 0.5493 | 0.7510 |
| 0.2655 | 0.65 | 1400 | 0.2760 | 0.6107 | 0.5426 | 0.7124 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|