File size: 2,285 Bytes
f0464a0 ff74d22 f0464a0 6eed9bf f0464a0 ff74d22 f0464a0 6eed9bf f0464a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
model-index:
- name: ryan_model314_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ryan_model314_3
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2783
- Na Accuracy: 0.9389
- Ordinal Mae: 0.8154
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Na Accuracy | Ordinal Mae |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-----------:|
| 0.3676 | 0.05 | 100 | 0.3423 | 0.9274 | 1.1293 |
| 0.3329 | 0.09 | 200 | 0.3136 | 0.9314 | 1.0706 |
| 0.3134 | 0.14 | 300 | 0.3302 | 0.9166 | 1.1220 |
| 0.314 | 0.19 | 400 | 0.2992 | 0.9256 | 0.8202 |
| 0.2965 | 0.23 | 500 | 0.3198 | 0.9249 | 1.2210 |
| 0.3068 | 0.28 | 600 | 0.2673 | 0.9372 | 1.1036 |
| 0.2824 | 0.32 | 700 | 0.2922 | 0.9372 | 1.4977 |
| 0.2914 | 0.37 | 800 | 0.2798 | 0.9384 | 0.7789 |
| 0.2968 | 0.42 | 900 | 0.2710 | 0.9369 | 0.9694 |
| 0.2433 | 0.46 | 1000 | 0.2652 | 0.9372 | 1.0212 |
| 0.2438 | 0.51 | 1100 | 0.2783 | 0.9389 | 0.8154 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|