gemma-7b-prompts
This model is a fine-tuned version of google/gemma-7b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7687 | 0.09 | 100 | 1.1701 |
0.7207 | 0.19 | 200 | 1.0388 |
0.7185 | 0.28 | 300 | 0.9201 |
0.9138 | 0.38 | 400 | 0.8356 |
0.6879 | 0.47 | 500 | 0.7887 |
0.559 | 0.56 | 600 | 0.7439 |
0.5832 | 0.66 | 700 | 0.7136 |
0.556 | 0.75 | 800 | 0.6738 |
0.5783 | 0.85 | 900 | 0.6341 |
0.6397 | 0.94 | 1000 | 0.6029 |
0.3719 | 1.03 | 1100 | 0.5467 |
0.5698 | 1.13 | 1200 | 0.5181 |
0.6411 | 1.22 | 1300 | 0.4972 |
0.6049 | 1.32 | 1400 | 0.4737 |
0.5309 | 1.41 | 1500 | 0.4417 |
0.4735 | 1.5 | 1600 | 0.4218 |
0.5055 | 1.6 | 1700 | 0.4065 |
0.5309 | 1.69 | 1800 | 0.3900 |
0.5644 | 1.79 | 1900 | 0.3792 |
0.3979 | 1.88 | 2000 | 0.3761 |
Framework versions
- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 4
Model tree for rreit/gemma-7b-prompts
Base model
google/gemma-7b