bpmn-task-extractor

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0970
  • Precision: 0.95
  • Recall: 0.95
  • F1: 0.9500
  • Accuracy: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 1 1.0813 0.3077 0.2 0.2424 0.6404
No log 2.0 2 0.7296 0.4783 0.55 0.5116 0.7191
No log 3.0 3 0.5097 0.6111 0.55 0.5789 0.8090
No log 4.0 4 0.3683 0.7059 0.6 0.6486 0.8652
No log 5.0 5 0.2926 0.75 0.6 0.6667 0.8539
No log 6.0 6 0.2268 0.7647 0.65 0.7027 0.8764
No log 7.0 7 0.1699 0.7778 0.7 0.7368 0.9101
No log 8.0 8 0.1273 0.8 0.8 0.8000 0.9438
No log 9.0 9 0.1061 0.95 0.95 0.9500 0.9888
No log 10.0 10 0.0970 0.95 0.95 0.9500 0.9888

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using rkrstacic/bpmn-task-extractor 1