layoutlm-base-uncased-finetuned-invoices-3

This model is a fine-tuned version of riteshbehera857/layoutlm-base-uncased-finetuned-invoices-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0163
  • B-adress: {'precision': 0.9780666125101544, 'recall': 0.9868852459016394, 'f1': 0.9824561403508772, 'number': 1220}
  • B-name: {'precision': 0.9794117647058823, 'recall': 0.9881305637982196, 'f1': 0.983751846381093, 'number': 337}
  • Gst no: {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126}
  • Invoice no: {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105}
  • Order date: {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128}
  • Order id: {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130}
  • S-adress: {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007}
  • S-name: {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480}
  • Total gross: {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50}
  • Total net: {'precision': 0.984251968503937, 'recall': 0.9920634920634921, 'f1': 0.9881422924901185, 'number': 126}
  • Overall Precision: 0.9871
  • Overall Recall: 0.9913
  • Overall F1: 0.9892
  • Overall Accuracy: 0.9964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss B-adress B-name Gst no Invoice no Order date Order id S-adress S-name Total gross Total net Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0175 1.0 19 0.0149 {'precision': 0.9780130293159609, 'recall': 0.9844262295081967, 'f1': 0.9812091503267973, 'number': 1220} {'precision': 0.9793510324483776, 'recall': 0.9851632047477745, 'f1': 0.9822485207100592, 'number': 337} {'precision': 1.0, 'recall': 0.9841269841269841, 'f1': 0.9919999999999999, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9940387481371088, 'recall': 0.9970104633781763, 'f1': 0.9955223880597015, 'number': 2007} {'precision': 0.9958333333333333, 'recall': 0.9958333333333333, 'f1': 0.9958333333333333, 'number': 480} {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} {'precision': 0.946969696969697, 'recall': 0.9920634920634921, 'f1': 0.9689922480620156, 'number': 126} 0.9856 0.9911 0.9884 0.9961
0.0131 2.0 38 0.0163 {'precision': 0.9780666125101544, 'recall': 0.9868852459016394, 'f1': 0.9824561403508772, 'number': 1220} {'precision': 0.9794117647058823, 'recall': 0.9881305637982196, 'f1': 0.983751846381093, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} {'precision': 0.984251968503937, 'recall': 0.9920634920634921, 'f1': 0.9881422924901185, 'number': 126} 0.9871 0.9913 0.9892 0.9964
0.0111 3.0 57 0.0180 {'precision': 0.9826732673267327, 'recall': 0.9762295081967213, 'f1': 0.9794407894736842, 'number': 1220} {'precision': 0.9736842105263158, 'recall': 0.9881305637982196, 'f1': 0.9808541973490427, 'number': 337} {'precision': 1.0, 'recall': 0.9682539682539683, 'f1': 0.9838709677419354, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937106918238994, 'recall': 0.9875, 'f1': 0.9905956112852665, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.984, 'recall': 0.9761904761904762, 'f1': 0.9800796812749003, 'number': 126} 0.9877 0.9875 0.9876 0.9960
0.0096 4.0 76 0.0202 {'precision': 0.9811165845648604, 'recall': 0.9795081967213115, 'f1': 0.9803117309269893, 'number': 1220} {'precision': 0.9851632047477745, 'recall': 0.9851632047477745, 'f1': 0.9851632047477745, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9964912280701754, 'recall': 0.9905331340308918, 'f1': 0.993503248375812, 'number': 2007} {'precision': 0.9676113360323887, 'recall': 0.9958333333333333, 'f1': 0.9815195071868584, 'number': 480} {'precision': 0.8620689655172413, 'recall': 1.0, 'f1': 0.9259259259259259, 'number': 50} {'precision': 1.0, 'recall': 0.9444444444444444, 'f1': 0.9714285714285714, 'number': 126} 0.9858 0.9851 0.9854 0.9957
0.0086 5.0 95 0.0188 {'precision': 0.9787408013082584, 'recall': 0.9811475409836066, 'f1': 0.9799426934097422, 'number': 1220} {'precision': 0.9852507374631269, 'recall': 0.9910979228486647, 'f1': 0.9881656804733727, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9960179193628671, 'recall': 0.9970104633781763, 'f1': 0.9965139442231075, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.847457627118644, 'recall': 1.0, 'f1': 0.9174311926605504, 'number': 50} {'precision': 0.9761904761904762, 'recall': 0.9761904761904762, 'f1': 0.9761904761904762, 'number': 126} 0.9867 0.9890 0.9878 0.9960
0.0102 6.0 114 0.0185 {'precision': 0.9827302631578947, 'recall': 0.9795081967213115, 'f1': 0.9811165845648604, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9624060150375939, 'recall': 0.9846153846153847, 'f1': 0.973384030418251, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937369519832986, 'recall': 0.9916666666666667, 'f1': 0.9927007299270073, 'number': 480} {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} 0.9879 0.9892 0.9885 0.9963
0.0084 7.0 133 0.0201 {'precision': 0.9747762408462164, 'recall': 0.9819672131147541, 'f1': 0.9783585136790527, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9622641509433962, 'recall': 0.9714285714285714, 'f1': 0.9668246445497629, 'number': 105} {'precision': 0.9841269841269841, 'recall': 0.96875, 'f1': 0.9763779527559054, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} 0.9867 0.9892 0.9879 0.9960
0.0078 8.0 152 0.0201 {'precision': 0.9819672131147541, 'recall': 0.9819672131147541, 'f1': 0.9819672131147541, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.96875, 'recall': 0.96875, 'f1': 0.96875, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9950273495773247, 'recall': 0.9970104633781763, 'f1': 0.9960179193628671, 'number': 2007} {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} 0.9875 0.9898 0.9887 0.9963
0.0064 9.0 171 0.0206 {'precision': 0.9804081632653061, 'recall': 0.9844262295081967, 'f1': 0.9824130879345603, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937629937629938, 'recall': 0.9958333333333333, 'f1': 0.9947970863683663, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} 0.9873 0.9904 0.9889 0.9964
0.0062 10.0 190 0.0213 {'precision': 0.9795751633986928, 'recall': 0.9827868852459016, 'f1': 0.9811783960720132, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9696969696969697, 'recall': 0.9846153846153847, 'f1': 0.9770992366412214, 'number': 130} {'precision': 0.9955223880597015, 'recall': 0.9970104633781763, 'f1': 0.9962658700522778, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} 0.9869 0.9894 0.9881 0.9962
0.0056 11.0 209 0.0218 {'precision': 0.9819227608874281, 'recall': 0.9795081967213115, 'f1': 0.9807139926138695, 'number': 1220} {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9965122072745392, 'recall': 0.9965122072745392, 'f1': 0.9965122072745392, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} 0.9881 0.9883 0.9882 0.9962
0.0052 12.0 228 0.0217 {'precision': 0.980440097799511, 'recall': 0.9860655737704918, 'f1': 0.98324478953821, 'number': 1220} {'precision': 0.9794721407624634, 'recall': 0.9910979228486647, 'f1': 0.9852507374631269, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.8928571428571429, 'recall': 1.0, 'f1': 0.9433962264150945, 'number': 50} {'precision': 0.9919354838709677, 'recall': 0.9761904761904762, 'f1': 0.9840000000000001, 'number': 126} 0.9875 0.9900 0.9888 0.9964
0.0049 13.0 247 0.0225 {'precision': 0.9812091503267973, 'recall': 0.9844262295081967, 'f1': 0.9828150572831423, 'number': 1220} {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1': 0.9846153846153847, 'number': 130} {'precision': 0.9965104685942173, 'recall': 0.9960139511709019, 'f1': 0.9962621480189384, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.9259259259259259, 'recall': 1.0, 'f1': 0.9615384615384615, 'number': 50} {'precision': 0.9920634920634921, 'recall': 0.9920634920634921, 'f1': 0.9920634920634921, 'number': 126} 0.9883 0.9898 0.9891 0.9965
0.0052 14.0 266 0.0224 {'precision': 0.9811937857726901, 'recall': 0.9836065573770492, 'f1': 0.98239869013508, 'number': 1220} {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} {'precision': 0.992, 'recall': 0.9841269841269841, 'f1': 0.9880478087649401, 'number': 126} 0.9875 0.9896 0.9885 0.9964
0.0046 15.0 285 0.0224 {'precision': 0.9811629811629812, 'recall': 0.9819672131147541, 'f1': 0.9815649324047521, 'number': 1220} {'precision': 0.9766081871345029, 'recall': 0.9910979228486647, 'f1': 0.9837997054491899, 'number': 337} {'precision': 1.0, 'recall': 0.9603174603174603, 'f1': 0.9797570850202428, 'number': 126} {'precision': 0.9629629629629629, 'recall': 0.9904761904761905, 'f1': 0.9765258215962442, 'number': 105} {'precision': 0.9763779527559056, 'recall': 0.96875, 'f1': 0.9725490196078432, 'number': 128} {'precision': 0.9770992366412213, 'recall': 0.9846153846153847, 'f1': 0.9808429118773947, 'number': 130} {'precision': 0.9955201592832255, 'recall': 0.9965122072745392, 'f1': 0.9960159362549801, 'number': 2007} {'precision': 0.9937238493723849, 'recall': 0.9895833333333334, 'f1': 0.9916492693110648, 'number': 480} {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} {'precision': 0.992, 'recall': 0.9841269841269841, 'f1': 0.9880478087649401, 'number': 126} 0.9875 0.9892 0.9883 0.9963

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for riteshbehera857/layoutlm-base-uncased-finetuned-invoices-3