File size: 4,978 Bytes
b8988ec
258443b
 
1336c1e
b8988ec
 
1336c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258443b
b8988ec
 
 
 
 
258443b
b8988ec
258443b
b8988ec
258443b
b8988ec
258443b
b8988ec
258443b
b8988ec
258443b
b8988ec
258443b
 
70ecc9e
258443b
 
 
 
 
 
b8988ec
258443b
b8988ec
258443b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8988ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258443b
 
 
 
 
 
 
 
 
 
 
 
1336c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- HuggingFaceH4/no_robots
base_model: openchat/openchat_3.5
widget:
- text: '<|system|>

    You are a friendly chatbot who always responds in the style of a pirate</s>

    <|user|>

    How many helicopters can a human eat in one sitting?</s>

    <|assistant|>

    '
  output:
    text: Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that
      a human cannot eat a helicopter, as it be a large machine made of metal and
      suchlike, not fit for human consumption. A human can eat food, like a fine feast
      of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty!
      So, the answer be none, none at all. Arr!
pipeline_tag: text-generation
model-index:
- name: smol-7b
  results: []
---

# Smol 7B

This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook).

## Model date

rishiraj/smol-7b was trained between 1st and 3rd December, 2023.

## Evaluation

It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu).

| Model                        | Average | ARC   | HellaSwag | MMLU  | TruthfulQA | Winogrande | GSM8K |
| ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- |
| **rishiraj/smol-7b**             | **67.11**   | **63.74** | **84.77**     | **65**    | **46.17**      | **80.66**      | **62.32** |
| argilla/notus-7b-v1          | 63.49   | 64.59 | 84.83     | 63.04 | 54.35      | 79.56      | 34.57 |
| Intel/neural-chat-7b-v3-1    | 61.59   | 66.21 | 83.64     | 62.37 | 59.65      | 78.14      | 19.56 |
| HuggingFaceH4/zephyr-7b-beta | 61.59   | 62.46 | 84.35     | 60.7  | 57.83      | 77.11      | 27.07 |
| Qwen/Qwen-7B                 | 59.19   | 51.37 | 78.47     | 59.84 | 47.79      | 72.69      | 44.96 |
| microsoft/Orca-2-7b          | 54.55   | 54.1  | 76.19     | 56.37 | 52.45      | 73.48      | 14.71 |
| 01-ai/Yi-6B                  | 54.08   | 55.55 | 76.57     | 64.11 | 41.96      | 74.19      | 12.13 |

## Inference procedure

Here's how you can run the model using the pipeline() function from 🤗 Transformers:

```
import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate"
    },
    {
        "role": "user",
        "content": "How many helicopters can a human eat in one sitting?"
    }
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0569        | 0.16  | 3    | 2.0409          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1

## Citation Information

```
@misc{rishiraj2023smol,
  author = {Rishiraj Acharya},
  title = {Smol 7B},
  year = {2023},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rishiraj__smol-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.11|
|AI2 Reasoning Challenge (25-Shot)|63.74|
|HellaSwag (10-Shot)              |84.77|
|MMLU (5-Shot)                    |65.00|
|TruthfulQA (0-shot)              |46.17|
|Winogrande (5-shot)              |80.66|
|GSM8k (5-shot)                   |62.32|