File size: 3,733 Bytes
b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b fe5bb7d 258443b b8988ec 258443b b8988ec 258443b b8988ec 258443b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: apache-2.0
base_model: openchat/openchat_3.5
datasets:
- HuggingFaceH4/no_robots
language:
- en
tags:
- generated_from_trainer
pipeline_tag: text-generation
model-index:
- name: smol-7b
results: []
---
# Smol 7B
This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook).
## Model date
rishiraj/smol-7b was trained between 1st and 3rd December, 2023.
## Evaluation
It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu).
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- |
| **rishiraj/smol-7b | 67.11 | 63.74 | 84.77 | 65 | 46.17 | 80.66 | 62.32** |
| argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 |
| Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 |
| HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 |
| Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 |
| microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 |
| 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 |
## Inference procedure
Here's how you can run the model using the pipeline() function from 🤗 Transformers:
```
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate"
},
{
"role": "user",
"content": "How many helicopters can a human eat in one sitting?"
}
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0569 | 0.16 | 3 | 2.0409 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
## Citation Information
```
@misc{rishiraj2023smol,
author = {Rishiraj Acharya},
title = {Smol 7B},
year = {2023},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}}
}
``` |