llama2-13B_MT

This model is a fine-tuned version of meta-llama/Llama-2-13b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5717
  • Accuracy: 0.7967
  • Precision: 0.8296
  • Recall: 0.7467
  • F1 score: 0.7860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
0.6169 0.25 200 0.735 0.7145 0.7743 0.6633 0.5712
0.5218 0.5 400 0.765 0.7487 0.8046 0.7 0.5406
0.4976 0.75 600 0.7717 0.7486 0.8327 0.68 0.4991
0.4531 1.0 800 0.7567 0.7045 0.8969 0.58 0.5727
0.339 1.25 1000 0.6176 0.7617 0.9198 0.5733 0.7064
0.3046 1.5 1200 0.5150 0.7767 0.7964 0.7433 0.7690
0.3363 1.75 1400 0.5185 0.795 0.8554 0.71 0.7760
0.3074 2.0 1600 0.4635 0.79 0.7862 0.7967 0.7914
0.2052 2.25 1800 0.5411 0.8 0.8659 0.71 0.7802
0.1841 2.5 2000 0.5959 0.8033 0.8889 0.6933 0.7790
0.1629 2.75 2200 0.5510 0.7933 0.8143 0.76 0.7862
0.1559 3.0 2400 0.5717 0.7967 0.8296 0.7467 0.7860

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rishavranaut/llama2-13B_MT

Adapter
(195)
this model