File size: 2,559 Bytes
4082cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-2-13b-hf
metrics:
- accuracy
- precision
- recall
model-index:
- name: Llama2_13B_Task2_semantic_pred
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama2_13B_Task2_semantic_pred

This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3818
- Accuracy: 0.9087
- Precision: 0.9087
- Recall: 0.9087
- F1 score: 0.9087

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Accuracy | F1 score | Precision | Recall | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:--------:|:---------:|:------:|:---------------:|
| 0.4564        | 0.2604 | 200  | 0.8214   | 0.8198   | 0.8311    | 0.8214 | 0.4378          |
| 0.3824        | 0.5208 | 400  | 0.8279   | 0.8279   | 0.8279    | 0.8279 | 0.4660          |
| 0.3609        | 0.7812 | 600  | 0.8631   | 0.8630   | 0.8635    | 0.8631 | 0.3303          |
| 0.3065        | 1.0417 | 800  | 0.8696   | 0.8695   | 0.8724    | 0.8696 | 0.3470          |
| 0.1987        | 1.3021 | 1000 | 0.8722   | 0.8722   | 0.8733    | 0.8722 | 0.3563          |
| 0.2043        | 1.5625 | 1200 | 0.9022   | 0.9020   | 0.9051    | 0.9022 | 0.3349          |
| 0.2193        | 1.8229 | 1400 | 0.8996   | 0.8996   | 0.8997    | 0.8996 | 0.3166          |
| 0.1674        | 2.0833 | 1600 | 0.8931   | 0.8930   | 0.8937    | 0.8931 | 0.3300          |
| 0.1226        | 2.3438 | 1800 | 0.3672   | 0.9087   | 0.9094    | 0.9087 | 0.9087          |
| 0.123         | 2.6042 | 2000 | 0.3862   | 0.9074   | 0.9091    | 0.9074 | 0.9073          |
| 0.0792        | 2.8646 | 2200 | 0.3818   | 0.9087   | 0.9087    | 0.9087 | 0.9087          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1