Llama2_13B_Task2_semantic_pred

This model is a fine-tuned version of meta-llama/Llama-2-13b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3818
  • Accuracy: 0.9087
  • Precision: 0.9087
  • Recall: 0.9087
  • F1 score: 0.9087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
0.4564 0.2604 200 0.8214 0.8198 0.8311 0.8214 0.4378
0.3824 0.5208 400 0.8279 0.8279 0.8279 0.8279 0.4660
0.3609 0.7812 600 0.8631 0.8630 0.8635 0.8631 0.3303
0.3065 1.0417 800 0.8696 0.8695 0.8724 0.8696 0.3470
0.1987 1.3021 1000 0.8722 0.8722 0.8733 0.8722 0.3563
0.2043 1.5625 1200 0.9022 0.9020 0.9051 0.9022 0.3349
0.2193 1.8229 1400 0.8996 0.8996 0.8997 0.8996 0.3166
0.1674 2.0833 1600 0.8931 0.8930 0.8937 0.8931 0.3300
0.1226 2.3438 1800 0.3672 0.9087 0.9094 0.9087 0.9087
0.123 2.6042 2000 0.3862 0.9074 0.9091 0.9074 0.9073
0.0792 2.8646 2200 0.3818 0.9087 0.9087 0.9087 0.9087

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rishavranaut/Llama2_13B_Task2_semantic_pred

Adapter
(195)
this model