YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

how to use

import torch from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL from diffusers import AutoencoderDC from torchvision.utils import save_image import numpy as np import h5py

dc_encoder=AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f64c128-in-1.0-diffusers", torch_dtype=torch.float32).to('cuda')

with h5py.File('latent_folder/image_latents.hdf5', 'r', libver='latest', swmr=True) as f: print(list(f.keys())) dataset = f['image_latents'][:]

latents=np.expand_dims(dataset[5]*35, axis=0) latents=torch.from_numpy(latents) latents=latents.float() latents=latents.to('cuda')

y = dc_encoder.decode(latents).sample

save_image(y * 0.5 + 0.5, "demo_dc_ae.png")

import clip model, _ = clip.load("ViT-L/14")

model.to('cuda')

def encode_text(label, model, device): text_tokens = clip.tokenize(label, truncate=True).to(device) text_encoding = model.encode_text(text_tokens) return text_encoding.cpu()

import h5py

Open the file

f = h5py.File('latent_folder/text_encodings.hdf5', 'r')

View the contents

print(list(f.keys()))

Access specific datasets

dataset = f['text_encodings'][:]

Close the file when done

f.close()

def cosine_similarity(v1, v2): # Reshape v1 to match v2's dimensions if needed v1 = v1.reshape(-1) # converts (1,768) to (768,)

# Calculate cosine similarity
dot_product = np.dot(v1, v2)
norm_v1 = np.linalg.norm(v1)
norm_v2 = np.linalg.norm(v2)

return dot_product / (norm_v1 * norm_v2)

textembed=encode_text("""The double-cut pork chop at The Ainsworth in""" , model,'cuda')

cosine_similarity(textembed.cpu().detach().numpy() , dataset[5])

dataset link https://huggingface.co/datasets/zzliang/GRIT

Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.