Text Generation
Transformers
PyTorch
Safetensors
Japanese
English
qwen
custom_code
File size: 6,226 Bytes
a694196
 
 
 
 
 
 
 
 
 
 
 
 
 
03cae78
 
84db972
 
 
a694196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03cae78
a694196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9005926
03cae78
 
9005926
 
03cae78
 
 
 
 
 
 
 
9005926
 
 
a694196
9005926
a694196
 
03cae78
9005926
a694196
9005926
a694196
 
 
 
 
9005926
a694196
9005926
a694196
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- qwen
inference: false
license: other
license_name: tongyi-qianwen-license-agreement
license_link: >-
  https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
base_model: Qwen/Qwen-7B
---

# `rinna/nekomata-7b`

![rinna-icon](./rinna.png)

# Overview
We conduct continual pre-training of [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) on **30B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks. It also enjoys the following great features provided by the original Qwen model.
* The inclusive Qwen vocabulary (vocab size > 150k) enables the model to processs Japanese texts much more efficiently than the previously released [youri series](https://huggingface.co/collections/rinna/youri-7b-654053610cb8e9d8e6289efc).
* The model supports a maximum sequence length of 32768.

The name `nekomata` comes from the Japanese word [`猫又/ねこまた/Nekomata`](https://ja.wikipedia.org/wiki/%E7%8C%AB%E5%8F%88), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).


* **Library**

    The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).

* **Model architecture**

    A 32-layer, 4096-hidden-size transformer-based language model. Please refer to the [Qwen paper](https://arxiv.org/abs/2309.16609) for architecture details.

* **Continual pre-training**

    The model was initialized with the [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) model and continually trained on around **30B** tokens from a mixture of the following corpora
    - [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz)
    - [Japanese C4](https://huggingface.co/datasets/mc4)
    - [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
    - [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
    - [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
    - rinna curated Japanese dataset

* **Contributors**

    - [Tianyu Zhao](https://huggingface.co/tianyuz)
    - [Akio Kaga](https://huggingface.co/rakaga)
    - [Kei Sawada](https://huggingface.co/keisawada)
    
---

# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).

---

# How to use the model

~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/nekomata-7b", trust_remote_code=True)

# Use GPU with bf16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, bf16=True)

# Use GPU with fp16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, fp16=True)

# Use CPU
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="cpu", trust_remote_code=True)

# Automatically select device and precision
model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True)

text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        min_new_tokens=200,
        do_sample=True,
        temperature=1.0,
        top_p=0.95,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
~~~~

---

# Tokenization
The model uses the original Qwen tokenizer. It augments the [`cl100k` tiktoken tokenizer](https://github.com/openai/tiktoken) and has a vocabulary size of 151,936. The inclusive vocabulary helps the model to reach a better tokenization efficiency, especially for Japanese texts.

We compared the `Qwen` tokenizer (as used in `nekomata`) and the `llama-2` tokenizer (as used in `youri`) on different text collections and found that the Qwen tokenizer achieves a much better byte2token rate (i.e. the average number of tokens produced from 1 byte of text) as following. A lower byte2token rate indicates a better tokenization efficiency.


| Tokenizer | Japanese | English | Multilingual |
| --- | --- | --- | --- |
| Qwen | 0.24 | 0.27 | 0.27 |
| llama-2 | 0.40 | 0.29 | 0.36 |

---

# How to cite
```bibtex
@misc{rinna-nekomata-7b,
    title = {rinna/nekomata-7b},
    author = {Zhao, Tianyu and Kaga, Akio and Sawada, Kei},
    url = {https://huggingface.co/rinna/nekomata-7b}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---

# References
```bibtex
@software{gpt-neox-library,
    title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch},
    author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
    doi = {10.5281/zenodo.5879544},
    month = {8},
    year = {2021},
    version = {0.0.1},
    url = {https://www.github.com/eleutherai/gpt-neox}
}
```
---

# License
[Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)