Feature Extraction
Transformers
PyTorch
Safetensors
Japanese
hubert
speech
File size: 2,169 Bytes
6e28e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language: ja
datasets:
  - reazon-research/reazonspeech
tags:
  - hubert
  - speech
license: apache-2.0
---

# japanese-hubert-base

![rinna-icon](./rinna.png)

This is a Japanese HuBERT (Hidden Unit Bidirectional Encoder Representations from Transformers) model trained by [rinna Co., Ltd.](https://rinna.co.jp/)

This model was traind using a large-scale Japanese audio dataset, [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) corpus.

## How to use the model

```python
import torch
from transformers import HubertModel

model = HubertModel.from_pretrained("rinna/japanese-hubert-base")
model.eval()

wav_input_16khz = torch.randn(1, 10000)
outputs = model(wav_input_16khz)
print(f"Input:   {wav_input_16khz.size()}")  # [1, 10000]
print(f"Output:  {outputs.last_hidden_state.size()}")  # [1, 31, 768]
```

## Model summary

The model architecture is the same as the [original HuBERT base model](https://huggingface.co/facebook/hubert-base-ls960), which contains 12 transformer layers with 8 attention heads.
The model was trained using code from the [official repository](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert), and the detailed training configuration can be found in the same repository and the [original paper](https://ieeexplore.ieee.org/document/9585401).

A fairseq checkpoint file can also be available [here](https://huggingface.co/rinna/japanese-hubert-base/tree/main/fairseq).

## Training

The model was trained on approximately 19,000 hours of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) corpus.

## License

[The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)


## Citation
```bibtex
@article{hubert2021hsu,
  author={Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
  title={HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units},
  year={2021},
  volume={29},
  number={},
  pages={3451-3460},
  doi={10.1109/TASLP.2021.3122291}
}
```