|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- portuguese |
|
- brasil |
|
- gemma |
|
- portugues |
|
- instrucao |
|
datasets: |
|
- rhaymison/superset |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: Me explique como funciona um computador. |
|
example_title: Computador. |
|
- text: Me conte sobre a ida do homem a Lua. |
|
example_title: Homem na Lua. |
|
- text: Fale sobre uma curiosidade sobre a história do mundo |
|
example_title: História. |
|
- text: Escreva um poema bem interessante sobre o Sol e as flores. |
|
example_title: Escreva um poema. |
|
model-index: |
|
- name: gemma-portuguese-luana-2b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 24.42 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 24.34 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 27.11 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 70.86 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: pearson |
|
value: 1.51 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 43.97 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 40.05 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 51.83 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia/tweetsentbr_fewshot |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 30.42 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b |
|
name: Open Portuguese LLM Leaderboard |
|
--- |
|
|
|
# gemma-portuguese-2b-luana |
|
|
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana-2b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
|
|
## Model description |
|
|
|
updated: 2024-04-10 20:06 |
|
|
|
The gemma-portuguese-2b model is a portuguese model trained with the superset dataset with 250,000 instructions. |
|
The model is mainly focused on text generation and instruction. |
|
The model was not trained on math and code tasks. |
|
The model is generalist with focus on understand portuguese inferences. |
|
With this fine tuning for portuguese, you can adjust the model for a specific field. |
|
|
|
## How to Use |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, pipeline |
|
import torch |
|
|
|
model = "rhaymison/gemma-portuguese-luana-2b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device="cuda", |
|
) |
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido." |
|
}, |
|
{"role": "user", "content": "Me conte sobre a ida do homem a Lua."}, |
|
] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.2, |
|
top_k=50, |
|
top_p=0.95 |
|
) |
|
print(outputs[0]["generated_text"][len(prompt):].replace("model","")) |
|
|
|
#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972. |
|
#Foi um marco significativo na exploração espacial e na ciência humana. |
|
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961. |
|
``` |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-luana-2b") |
|
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-luana-2b", device_map={"":0}) |
|
tokenizer2.pad_token = tokenizer2.eos_token |
|
tokenizer2.add_eos_token = True |
|
tokenizer2.add_bos_token, tokenizer2.add_eos_token |
|
tokenizer2.padding_side = "right" |
|
``` |
|
|
|
```python |
|
text = f"""<start_of_turn>user |
|
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. |
|
###instrução:Me conte sobre a ida do homem a Lua.<end_of_turn> |
|
<start_of_turn>model """ |
|
|
|
device = "cuda:0" |
|
|
|
inputs = tokenizer2(text, return_tensors="pt").to(device) |
|
|
|
outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False) |
|
|
|
output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True) |
|
print(output.replace("model"," ")) |
|
|
|
#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972. |
|
#Foi um marco significativo na exploração espacial e na ciência humana. |
|
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961. |
|
``` |
|
|
|
```python |
|
text = f"""<start_of_turn>user |
|
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. |
|
###instrução:Me explique como funciona um computador.<end_of_turn> |
|
<start_of_turn>model """ |
|
|
|
device = "cuda:0" |
|
|
|
inputs = tokenizer2(text, return_tensors="pt").to(device) |
|
|
|
outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False) |
|
|
|
output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True) |
|
print(output.replace("model"," ")) |
|
|
|
#Um computador é um dispositivo eletrônico que pode executar tarefas que um humano pode fazer. |
|
#Ele usa um conjunto de circuitos elétricos, componentes eletrônicos e software para processar informações e executar tarefas. |
|
#Os componentes de um computador incluem um processador, memória, unidade de armazenamento, unidade de processamento gráfica, |
|
#unidade de controle, unidade de entrada e saída,e dispositivos de entrada e saída. |
|
#O processador é o coração do computador e executa instruções de software.A memória é onde o computador armazena |
|
``` |
|
|
|
|
|
|
|
### Comments |
|
|
|
Any idea, help or report will always be welcome. |
|
|
|
email: rhaymisoncristian@gmail.com |
|
|
|
<div style="display:flex; flex-direction:row; justify-content:left"> |
|
<a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> |
|
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> |
|
</a> |
|
<a href="https://github.com/rhaymisonbetini" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> |
|
</a> |
|
</div> |
|
# Open Portuguese LLM Leaderboard Evaluation Results |
|
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/gemma-portuguese-luana-2b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) |
|
|
|
| Metric | Value | |
|
|--------------------------|---------| |
|
|Average |**34.94**| |
|
|ENEM Challenge (No Images)| 24.42| |
|
|BLUEX (No Images) | 24.34| |
|
|OAB Exams | 27.11| |
|
|Assin2 RTE | 70.86| |
|
|Assin2 STS | 1.51| |
|
|FaQuAD NLI | 43.97| |
|
|HateBR Binary | 40.05| |
|
|PT Hate Speech Binary | 51.83| |
|
|tweetSentBR | 30.42| |
|
|
|
|