File size: 10,340 Bytes
2814a06
071d7b7
 
 
2814a06
0665379
 
 
 
bcca213
 
904c51c
 
1c91e6b
 
91f058a
 
96a4b39
1c91e6b
 
 
 
 
904c51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2814a06
 
44f3045
 
 
 
 
 
 
e675450
2814a06
96a4b39
2e73faa
 
 
bcca213
f8e6b93
 
1a9e275
 
2814a06
96a4b39
2814a06
 
96a4b39
 
 
2814a06
2e73faa
2814a06
96a4b39
 
 
 
 
 
 
2814a06
96a4b39
bcca213
 
 
 
f8e6b93
96a4b39
 
 
 
 
 
a3a3d27
96a4b39
 
 
 
2814a06
f8e6b93
 
 
96a4b39
2814a06
 
96a4b39
 
2814a06
2e73faa
 
96a4b39
 
 
 
 
2814a06
96a4b39
bcca213
 
 
 
2814a06
96a4b39
2814a06
96a4b39
2814a06
6afda49
2814a06
96a4b39
 
2814a06
f8e6b93
 
 
96a4b39
2814a06
91f058a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a4b39
2814a06
96a4b39
2814a06
96a4b39
2814a06
96a4b39
 
 
 
 
 
 
904c51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portuguese
- brasil
- gemma
- portugues
- instrucao
datasets:
- rhaymison/superset
pipeline_tag: text-generation
widget:
- text: Me explique como funciona um computador.
  example_title: Computador.
- text: Me conte sobre a ida do homem a Lua.
  example_title: Homem na Lua.
- text: Fale sobre uma curiosidade sobre a história do mundo
  example_title: História.
- text: Escreva um poema bem interessante sobre o Sol e as flores.
  example_title: Escreva um poema.
model-index:
- name: gemma-portuguese-luana-2b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 24.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 24.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 27.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 70.86
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 1.51
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 43.97
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 40.05
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 51.83
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 30.42
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
---

# gemma-portuguese-2b-luana


<p align="center">
  <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana-2b.webp"  width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>



## Model description

updated: 2024-04-10 20:06

The gemma-portuguese-2b model is a portuguese model trained with the superset dataset with 250,000 instructions. 
The model is mainly focused on text generation and instruction.
The model was not trained on math and code tasks.
The model is generalist with focus on understand portuguese inferences. 
With this fine tuning for portuguese, you can adjust the model for a specific field.

## How to Use


```python
from transformers import AutoTokenizer, pipeline
import torch

model = "rhaymison/gemma-portuguese-luana-2b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

messages = [
   {
      "role": "system",
      "content": "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    },
    {"role": "user", "content": "Me conte sobre a ida do homem a Lua."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
    prompt,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.2,
    top_k=50,
    top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):].replace("model",""))

#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972.
#Foi um marco significativo na exploração espacial e na ciência humana.
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961.
```


```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-luana-2b")
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-luana-2b", device_map={"":0})
tokenizer2.pad_token = tokenizer2.eos_token
tokenizer2.add_eos_token = True
tokenizer2.add_bos_token, tokenizer2.add_eos_token
tokenizer2.padding_side = "right"
```

```python
text = f"""<start_of_turn>user 
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
###instrução:Me conte sobre a ida do homem a Lua.<end_of_turn> 
<start_of_turn>model """

device = "cuda:0"

inputs = tokenizer2(text, return_tensors="pt").to(device)

outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)

output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))

#A viagem à Lua foi um esforço monumental realizado pela Agência Espacial dos EUA entre 1969 e 1972.
#Foi um marco significativo na exploração espacial e na ciência humana.
#Aqui está uma visão geral de sua jornada: 1. O primeiro voo espacial humano foi o de Yuri Gagarin, que voou a Terra em 12 de abril de 1961. 
```

```python
text = f"""<start_of_turn>user 
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
###instrução:Me explique como funciona um computador.<end_of_turn> 
<start_of_turn>model """

device = "cuda:0"

inputs = tokenizer2(text, return_tensors="pt").to(device)

outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)

output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))

#Um computador é um dispositivo eletrônico que pode executar tarefas que um humano pode fazer.
#Ele usa um conjunto de circuitos elétricos, componentes eletrônicos e software para processar informações e executar tarefas.
#Os componentes de um computador incluem um processador, memória, unidade de armazenamento, unidade de processamento gráfica,
#unidade de controle, unidade de entrada e saída,e dispositivos de entrada e saída.
#O processador é o coração do computador e executa instruções de software.A memória é onde o computador armazena
```



### Comments

Any idea, help or report will always be welcome.

email: rhaymisoncristian@gmail.com

 <div style="display:flex; flex-direction:row; justify-content:left">
    <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank">
    <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
  </a>
  <a href="https://github.com/rhaymisonbetini" target="_blank">
    <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
  </a>
 </div>
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/gemma-portuguese-luana-2b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**34.94**|
|ENEM Challenge (No Images)|    24.42|
|BLUEX (No Images)         |    24.34|
|OAB Exams                 |    27.11|
|Assin2 RTE                |    70.86|
|Assin2 STS                |     1.51|
|FaQuAD NLI                |    43.97|
|HateBR Binary             |    40.05|
|PT Hate Speech Binary     |    51.83|
|tweetSentBR               |    30.42|