File size: 5,990 Bytes
46004f1
 
fd7dee4
 
 
 
 
 
 
 
 
 
 
 
46004f1
 
fd7dee4
46004f1
fd7dee4
06d4111
fd7dee4
46004f1
 
fd7dee4
e8f8fc9
46004f1
 
fd7dee4
46004f1
fd7dee4
 
 
46004f1
fd7dee4
 
 
 
46004f1
fd7dee4
 
 
 
46004f1
fd7dee4
46004f1
fd7dee4
 
46004f1
fd7dee4
 
 
46004f1
fd7dee4
46004f1
fd7dee4
 
46004f1
52e94d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7dee4
46004f1
52e94d6
fd7dee4
52e94d6
 
 
 
 
 
 
 
46004f1
 
52e94d6
 
 
 
 
 
 
fd7dee4
46004f1
8704641
 
 
 
fd7dee4
46004f1
fd7dee4
 
 
 
 
 
 
 
 
46004f1
fd7dee4
 
 
 
 
46004f1
fd7dee4
46004f1
fd7dee4
46004f1
fd7dee4
46004f1
fd7dee4
46004f1
fd7dee4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
library_name: transformers
license: apache-2.0
datasets:
- rhaymison/orca-math-portuguese-64k
language:
- pt
pipeline_tag: text-generation
base_model: rhaymison/Mistral-portuguese-luana-7b
tags:
- portuguese
- math
- mathematics
- matematica
---

# Mistral-portuguese-luana-7b-Mathematics

<p align="center">
  <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana-math.webp" alt="" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>


Luana Mathematics is a tuned model of the Luana-7b based on the Mistral 7b architecture.
This Model has been fine-tuned with 64k math problems and solutions derived from Microsoft's Orca-Math.


# How to use

You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches.
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. 
Important points like these help models (even smaller models like 7b) to perform much better.

```python
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics")
model.eval()

```

You can use with Pipeline but in this example i will use such as Streaming
```python

inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
### instrução: Se eu emprestei 100 reais para o meu irmão para que ele me pague em 3 vezes. O juros do empréstimo é 5% do valor do emprestimo por mes. Quanto meu irmão terá que me pagar no total?
[/INST]"""], return_tensors="pt")

inputs.to(model.device)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)


#Para calcular o valor total que seu irmão terá que pagar, precisamos primeiro calcular o interesse do empréstimo e depois adicioná -lo ao valor principal.
#O interesse do empréstimo é de 5% do valor do empréstimo por mês.Então, para cada mês, o interesse será:
#5% de 100 reais = 0,05 * 100 = 5 reais
#Como o empréstimo é devolvido em 3 vezes, o interesse total será:
#5 reais/mês * 3 meses = 15 reais
#Agora, adicionamos o interesse ao valor principal para encontrar o valor total que seu irmão terá que pagar:
#100 reais (valor principal) + 15 reais (juros) = 115 reais
#Portanto, seu irmão terá que pagar 115 reais no total. 
```
```python
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
### instrução: João Esta pilotando sua bicicleta a uma velocidade de 20 km por hora. Se João esta fazendo uma Viagem da cidade de Venda nova a cidade de Independencia que possuem a distancia entre si de 320km.
Quanto tempo João vai demorar para ir de uma cidade a outra?
[/INST]"""], return_tensors="pt")

inputs.to(model.device)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)


#Para descobrir quanto tempo levará João para viajar da cidade de venda nova para a cidade de Independência, precisamos dividir a distância total que ele precisa percorrer pela velocidade em que ele está andando.
#Distância total = 320 km
#Velocidade de João = 20 km/h
#Tempo = distância / velocidade
#Tempo = 320 km / 20 km / h
#Tempo = 16 horas
#Então, levará João 16 horas para viajar da cidade de venda nova para a cidade de Independência.
```


```python
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
### instrução: Qual a area de um triangulo equilatero de 4 cm de base por 2 de altura ?
[/INST]"""], return_tensors="pt")

inputs.to(model.device)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)


#A área de um triângulo equilátero é dada pela fórmula:
#Área = (1/2) * base * altura
#Dado que a base é de 4 cm e a altura é de 2 cm, podemos conectar esses valores à fórmula:
#Área = (1/2) * 4 cm * 2 cm
#Área = (1/2) * 8 cm²
#Área = 4 cm²
#Portanto, a área do triângulo equilátero é de 4 centímetros quadrados.
```

If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization.
For the complete model in colab you will need the A100.
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.

# 4bits

```python
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=bnb_config,
    device_map={"": 0}
)

```

### Comments

Any idea, help or report will always be welcome.

email: rhaymisoncristian@gmail.com

 <div style="display:flex; flex-direction:row; justify-content:left">
    <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank">
    <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
  </a>
  <a href="https://github.com/rhaymisonbetini" target="_blank">
    <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
  </a>