Edit model card

bert-base-uncased-finetuned-paper

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2326
  • Precision: 0.7612
  • Recall: 0.7456
  • F1: 0.7533
  • Accuracy: 0.9684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 73 0.1917 0.6756 0.5175 0.5861 0.9484
No log 2.0 146 0.1402 0.7516 0.6988 0.7242 0.9678
No log 3.0 219 0.1747 0.7397 0.6813 0.7093 0.9659
No log 4.0 292 0.1627 0.6797 0.7632 0.7190 0.9633
No log 5.0 365 0.1720 0.7005 0.7456 0.7224 0.9661
No log 6.0 438 0.2029 0.7515 0.7339 0.7426 0.9688
0.0876 7.0 511 0.1928 0.7415 0.7632 0.7522 0.9700
0.0876 8.0 584 0.2016 0.7579 0.7690 0.7634 0.9708
0.0876 9.0 657 0.2051 0.7371 0.7544 0.7457 0.9684
0.0876 10.0 730 0.2153 0.7477 0.7281 0.7378 0.9693
0.0876 11.0 803 0.2284 0.7626 0.7515 0.7570 0.9693
0.0876 12.0 876 0.2223 0.7139 0.7515 0.7322 0.9682
0.0876 13.0 949 0.2274 0.7471 0.7515 0.7493 0.9690
0.0022 14.0 1022 0.2321 0.7695 0.7515 0.7604 0.9695
0.0022 15.0 1095 0.2367 0.7590 0.7368 0.7478 0.9690
0.0022 16.0 1168 0.2327 0.7612 0.7456 0.7533 0.9695
0.0022 17.0 1241 0.2367 0.7704 0.7456 0.7578 0.9690
0.0022 18.0 1314 0.2309 0.7529 0.7485 0.7507 0.9691
0.0022 19.0 1387 0.2358 0.7711 0.7485 0.7596 0.9686
0.0022 20.0 1460 0.2326 0.7612 0.7456 0.7533 0.9684

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.