File size: 16,053 Bytes
4d8e7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import math
from torch.nn.modules.batchnorm import _BatchNorm
from collections import OrderedDict
from torch.optim.lr_scheduler import LambdaLR
import torch.nn as nn
from torch.nn import functional as F
import h5py
import fnmatch
from torchvision import transforms
import pickle
from tqdm import tqdm
_UINT8_MAX_F = float(torch.iinfo(torch.uint8).max)

def plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed):
    # save training curves
    for key in train_history[0]:
        plot_path = os.path.join(ckpt_dir, f"train_val_{key}_seed_{seed}.png")
        plt.figure()
        train_values = [summary[key].item() for summary in train_history]
        val_values = [summary[key].item() for summary in validation_history]
        plt.plot(
            np.linspace(0, num_epochs - 1, len(train_history)),
            train_values,
            label="train",
        )
        plt.plot(
            np.linspace(0, num_epochs - 1, len(validation_history)),
            val_values,
            label="validation",
        )
        plt.tight_layout()
        plt.legend()
        plt.title(key)
        plt.savefig(plot_path)
    print(f"Saved plots to {ckpt_dir}")


def tensor2numpy(input_tensor: torch.Tensor, range_min: int = -1) -> np.ndarray:
    """Converts tensor in [-1,1] to image(dtype=np.uint8) in range [0..255].

    Args:
        input_tensor: Input image tensor of Bx3xHxW layout, range [-1..1].
    Returns:
        A numpy image of layout BxHxWx3, range [0..255], uint8 dtype.
    """
    if range_min == -1:
        input_tensor = (input_tensor.float() + 1.0) / 2.0
    ndim = input_tensor.ndim
    output_image = input_tensor.clamp(0, 1).cpu().numpy()
    output_image = output_image.transpose((0,) + tuple(range(2, ndim)) + (1,))
    return (output_image * _UINT8_MAX_F + 0.5).astype(np.uint8)


def kl_divergence(mu, logvar):
    batch_size = mu.size(0)
    assert batch_size != 0
    if mu.data.ndimension() == 4:
        mu = mu.view(mu.size(0), mu.size(1))
    if logvar.data.ndimension() == 4:
        logvar = logvar.view(logvar.size(0), logvar.size(1))

    klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
    total_kld = klds.sum(1).mean(0, True)
    dimension_wise_kld = klds.mean(0)
    mean_kld = klds.mean(1).mean(0, True)

    return total_kld, dimension_wise_kld, mean_kld


class RandomShiftsAug(nn.Module):
    def __init__(self, pad_h, pad_w):
        super().__init__()
        self.pad_h = pad_h
        self.pad_w = pad_w
        print(f"RandomShiftsAug: pad_h {pad_h}, pad_w {pad_w}")

    def forward(self, x):
        orignal_shape = x.shape
        n, h, w = x.shape[0], x.shape[-2], x.shape[-1]  # n,T,M,C,H,W
        x = x.view(n, -1, h, w)  # n,T*M*C,H,W
        padding = (
            self.pad_w,
            self.pad_w,
            self.pad_h,
            self.pad_h,
        )  # left, right, top, bottom padding
        x = F.pad(x, padding, mode="replicate")

        h_pad, w_pad = h + 2 * self.pad_h, w + 2 * self.pad_w
        eps_h = 1.0 / h_pad
        eps_w = 1.0 / w_pad

        arange_h = torch.linspace(
            -1.0 + eps_h, 1.0 - eps_h, h_pad, device=x.device, dtype=x.dtype
        )[:h]
        arange_w = torch.linspace(
            -1.0 + eps_w, 1.0 - eps_w, w_pad, device=x.device, dtype=x.dtype
        )[:w]

        arange_h = arange_h.unsqueeze(1).repeat(1, w).unsqueeze(2)  # h w 1
        arange_w = arange_w.unsqueeze(1).repeat(1, h).unsqueeze(2)  # w h 1

        # print(arange_h.shape, arange_w.shape)
        base_grid = torch.cat([arange_w.transpose(1, 0), arange_h], dim=2)  # [H, W, 2]
        base_grid = base_grid.unsqueeze(0).repeat(
            n, 1, 1, 1
        )  # Repeat for batch [B, H, W, 2]

        shift_h = torch.randint(
            0, 2 * self.pad_h + 1, size=(n, 1, 1, 1), device=x.device, dtype=x.dtype
        ).float()
        shift_w = torch.randint(
            0, 2 * self.pad_w + 1, size=(n, 1, 1, 1), device=x.device, dtype=x.dtype
        ).float()
        shift_h *= 2.0 / h_pad
        shift_w *= 2.0 / w_pad

        grid = base_grid + torch.cat([shift_w, shift_h], dim=3)
        x = F.grid_sample(x, grid, padding_mode="zeros", align_corners=False)
        return x.view(orignal_shape)


def get_norm_stats(state, action):
    all_qpos_data = torch.from_numpy(np.array(state))
    all_action_data = torch.from_numpy(np.array(action))
    # normalize action data
    action_mean = all_action_data.mean(dim=[0], keepdim=True)
    action_std = all_action_data.std(dim=[0], keepdim=True)
    action_std = torch.clip(action_std, 1e-2, np.inf)  # clipping
    action_max = torch.amax(all_action_data, dim=[0], keepdim=True)
    action_min = torch.amin(all_action_data, dim=[0], keepdim=True)

    # normalize qpos data
    qpos_mean = all_qpos_data.mean(dim=[0], keepdim=True)
    qpos_std = all_qpos_data.std(dim=[0], keepdim=True)
    qpos_std = torch.clip(qpos_std, 1e-2, np.inf)  # clipping

    stats = {
        "action_mean": action_mean.numpy().squeeze(),
        "action_std": action_std.numpy().squeeze(),
        "action_max": action_max.numpy().squeeze(),
        "action_min": action_min.numpy().squeeze(),
        "qpos_mean": qpos_mean.numpy().squeeze(),
        "qpos_std": qpos_std.numpy().squeeze(),
    }

    return stats

class EpisodicDataset_Unified_Multiview(Dataset):
    def __init__(self, data_path_list, camera_names, chunk_size,stats, img_aug=False):
        super(EpisodicDataset_Unified_Multiview).__init__()
        self.data_path_list = data_path_list
        self.camera_names = camera_names
        self.chunk_size = chunk_size
        self.norm_stats = stats
        self.img_aug = img_aug
        self.ColorJitter = transforms.ColorJitter(
                brightness=0.2,contrast=0.2,saturation=0.2,hue=0.01)
    def __len__(self):
        return len(self.data_path_list) * 16 
    def __getitem__(self, path_index):
        # qpos = np.concatenate((root['/arm/jointStatePosition/masterLeft'][()], root['/arm/jointStatePosition/masterRight'][()]), axis=-1)
        # actions = np.concatenate((root['/arm/jointStatePosition/puppetLeft']
        path_index = path_index % len(self.data_path_list)  # ensure index is within bounds
        example_path = self.data_path_list[path_index]
        with h5py.File(example_path, 'r') as f:
            action = f['observations']['qpos'][()] # jointStatePosition/master
            qpos = f['action'][()] # jointStatePosition/puppet

        parent_path = os.path.dirname(example_path)
        Instruction_path = os.path.join(parent_path, 'instructions')
        # randomly sample instruction file
        instruction_files = [f for f in os.listdir(Instruction_path) if fnmatch.fnmatch(f, '*.pt')]
        instruction_file = os.path.join(Instruction_path, np.random.choice(instruction_files))
        instruction = torch.load(instruction_file, weights_only=False) # num_token * 4096  tensor
        # randomly sample an episode inex
        episode_len = action.shape[0]
        index = np.random.randint(0, episode_len)
        obs_qpos = qpos[index:index + 1]
        
        # stack images
        with h5py.File(example_path, 'r') as f:
            camera_list = []
            for camera_name in self.camera_names:                
                cam_jpeg_code = f['observations']['images'][camera_name][index]
                cam_image = cv2.imdecode(np.frombuffer(cam_jpeg_code, np.uint8), cv2.IMREAD_COLOR) # rgb
                camera_list.append(cam_image)
        obs_img = np.stack(camera_list, axis=0)  # shape: (N_views, H, W, C)
        original_action_shape = (self.chunk_size, *action.shape[1:])
        gt_action = np.zeros(original_action_shape)
        action_len = min(self.chunk_size, episode_len - index)
        gt_action[:action_len] = action[
                index  : index + action_len
            ]
        is_pad = np.zeros(self.chunk_size)
        is_pad[action_len:] = 1
        
        # construct observations tensor type
        image_data = torch.from_numpy(obs_img).unsqueeze(0).float()  # (history_steps+1, 1, H, W, 3) add num_view
        image_data = image_data.permute(0, 1, 4, 2, 3)  # (1, N_views, 3, H, W)
        qpos_data = torch.from_numpy(obs_qpos).float()# .unsqueeze(0) # (1, 14)
        action_data = torch.from_numpy(gt_action).float() # (chunk_size, 14)
        is_pad = torch.from_numpy(is_pad).bool() # (chunk_size, )
        instruction_data = instruction.mean(0).float()  # (4096)
        # normalize image and qpos
        image_data = image_data / 255.0  # Normalize to [0, 1] T N C H W 
        qpos_data = (qpos_data - self.norm_stats["qpos_mean"]) / self.norm_stats[
            "qpos_std"
        ]
        if self.img_aug and random.random() < 0.25:
            for t in range(image_data.shape[0]):
                for i in range(image_data.shape[1]):
                    image_data[t, i] =self.ColorJitter(image_data[t, i]) 
        return image_data, qpos_data.float(), action_data, is_pad, instruction_data

def load_data_unified(
    data_dir='/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/RDT/training_data/rdt_real_multitask',
    camera_names=['cam_high', 'cam_left_wrist', 'cam_right_wrist'],
    batch_size_train=32,
    chunk_size=100,
    img_aug=False,
    fintune=False,
):
    
    HDF5_file_path = []
    for root, _, files in os.walk(data_dir, followlinks=True):
        for filename in files:
            if filename.endswith('.hdf5'):
                HDF5_file_path.append(os.path.join(root, filename))
    print(f"Loading data from {data_dir} with {len(HDF5_file_path)} episodes and batch size {batch_size_train}")
    
    state_list = []
    action_list = []
    # qpos = np.concatenate((root['/arm/jointStatePosition/masterLeft'][()], root['/arm/jointStatePosition/masterRight'][()]), axis=-1)
    # actions = np.concatenate((root['/arm/jointStatePosition/puppetLeft']
    for p in tqdm(HDF5_file_path, desc="Data statics collection"):
        with h5py.File(p, 'r') as f:
            action = f['observations']['qpos'][()]
            qpos = f['action'][()]
            state_list.append(qpos)
            action_list.append(action)
    states = np.concatenate(state_list, axis=0)
    actions = np.concatenate(action_list, axis=0)
    
    if fintune:
        # load stats from pretrain path 1590 episodes
        pretrain_stats_path = '/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/ACT_DP_multitask/checkpoints/real_pretrain_50_2000/act_dp/dataset_stats.pkl'
        with open(pretrain_stats_path, 'rb') as f:
            stats = pickle.load(f)
        print(f"Loaded stats from {pretrain_stats_path}")
    else:
        stats = get_norm_stats(states, actions)
        
    for key, value in stats.items():
        print(f"{key}: {value}")
                    
    train_dataset = EpisodicDataset_Unified_Multiview(
        data_path_list=HDF5_file_path,
        camera_names=camera_names,
        chunk_size=chunk_size,
        stats=stats,
        img_aug=img_aug,
    )
    
    traind_data_loader = DataLoader(
        train_dataset,
        batch_size=batch_size_train,
        shuffle=True,
        num_workers=8,
        pin_memory=True,
    )
    
    return traind_data_loader,None,None, stats

def compute_dict_mean(epoch_dicts):
    result = {k: None for k in epoch_dicts[0]}
    num_items = len(epoch_dicts)
    for k in result:
        value_sum = 0
        for epoch_dict in epoch_dicts:
            value_sum += epoch_dict[k]
        result[k] = value_sum / num_items
    return result


def detach_dict(d):
    new_d = dict()
    for k, v in d.items():
        new_d[k] = v.detach()
    return new_d


# def set_seed(seed):
#     torch.manual_seed(seed)
#     np.random.seed(seed)
import random


def set_seed(seed):
    random.seed(seed)  #
    np.random.seed(seed)  #
    torch.manual_seed(seed)  #
    torch.cuda.manual_seed(seed)  #
    torch.cuda.manual_seed_all(seed)  #

def get_cosine_schedule_with_warmup(
    optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1
):
    """
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
    initial lr set in the optimizer.

    Args:
        optimizer ([~torch.optim.Optimizer]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (int):
            The number of steps for the warmup phase.
        num_training_steps (int):
            The total number of training steps.
        num_cycles (float, *optional*, defaults to 0.5):
            The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
            following a half-cosine).
        last_epoch (int, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        torch.optim.lr_scheduler.LambdaLR with the appropriate schedule.
    """

    def lr_lambda(current_step):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        progress = float(current_step - num_warmup_steps) / float(
            max(1, num_training_steps - num_warmup_steps)
        )
        return max(
            0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
        )

    return LambdaLR(optimizer, lr_lambda, last_epoch)


def get_constant_schedule(optimizer, last_epoch: int = -1) -> LambdaLR:
    """
    Create a schedule with a constant learning rate, using the learning rate set in optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)


def normalize_data(action_data, stats, norm_type, data_type="action"):

    if norm_type == "minmax":
        action_max = torch.from_numpy(stats[data_type + "_max"]).float().to(action_data.device)
        action_min = torch.from_numpy(stats[data_type + "_min"]).float().to(action_data.device)
        action_data = (action_data - action_min) / (action_max - action_min) * 2 - 1
    elif norm_type == "gaussian":
        action_mean = torch.from_numpy(stats[data_type + "_mean"]).float().to(action_data.device)
        action_std = torch.from_numpy(stats[data_type + "_std"]).float().to(action_data.device)
        action_data = (action_data - action_mean) / action_std
    return action_data


def convert_weight(obj):
    newmodel = OrderedDict()
    for k, v in obj.items():
        if k.startswith("module."):
            newmodel[k[7:]] = v
        else:
            newmodel[k] = v
    return newmodel


if __name__ == "__main__":
    train_dataloader,_,_,stats = load_data_unified(
        data_dir='/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/RDT/training_data/rdt_real_multitask',
        camera_names=['cam_high', 'cam_left_wrist', 'cam_right_wrist'],
        batch_size_train=32,
        chunk_size=100,
        img_aug=True,
    )
    
    for i, (image_data, qpos_data, action_data, is_pad, instruction_data) in enumerate(
        tqdm(train_dataloader, desc="Data loading")
    ):
        if i == 0:
            print(f"Batch {i}:")
            print(f"Image data shape: {image_data.shape} {image_data.max()}")
            print(f"Qpos data shape: {qpos_data.shape} {qpos_data.max()}" )
            print(f"Action data shape: {action_data.shape} {action_data.max()}")
            print(f"Is pad shape: {is_pad.shape}")
            print(f"Instruction data shape: {instruction_data.shape}")
        
        continue