File size: 16,053 Bytes
4d8e7a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import math
from torch.nn.modules.batchnorm import _BatchNorm
from collections import OrderedDict
from torch.optim.lr_scheduler import LambdaLR
import torch.nn as nn
from torch.nn import functional as F
import h5py
import fnmatch
from torchvision import transforms
import pickle
from tqdm import tqdm
_UINT8_MAX_F = float(torch.iinfo(torch.uint8).max)
def plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed):
# save training curves
for key in train_history[0]:
plot_path = os.path.join(ckpt_dir, f"train_val_{key}_seed_{seed}.png")
plt.figure()
train_values = [summary[key].item() for summary in train_history]
val_values = [summary[key].item() for summary in validation_history]
plt.plot(
np.linspace(0, num_epochs - 1, len(train_history)),
train_values,
label="train",
)
plt.plot(
np.linspace(0, num_epochs - 1, len(validation_history)),
val_values,
label="validation",
)
plt.tight_layout()
plt.legend()
plt.title(key)
plt.savefig(plot_path)
print(f"Saved plots to {ckpt_dir}")
def tensor2numpy(input_tensor: torch.Tensor, range_min: int = -1) -> np.ndarray:
"""Converts tensor in [-1,1] to image(dtype=np.uint8) in range [0..255].
Args:
input_tensor: Input image tensor of Bx3xHxW layout, range [-1..1].
Returns:
A numpy image of layout BxHxWx3, range [0..255], uint8 dtype.
"""
if range_min == -1:
input_tensor = (input_tensor.float() + 1.0) / 2.0
ndim = input_tensor.ndim
output_image = input_tensor.clamp(0, 1).cpu().numpy()
output_image = output_image.transpose((0,) + tuple(range(2, ndim)) + (1,))
return (output_image * _UINT8_MAX_F + 0.5).astype(np.uint8)
def kl_divergence(mu, logvar):
batch_size = mu.size(0)
assert batch_size != 0
if mu.data.ndimension() == 4:
mu = mu.view(mu.size(0), mu.size(1))
if logvar.data.ndimension() == 4:
logvar = logvar.view(logvar.size(0), logvar.size(1))
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
total_kld = klds.sum(1).mean(0, True)
dimension_wise_kld = klds.mean(0)
mean_kld = klds.mean(1).mean(0, True)
return total_kld, dimension_wise_kld, mean_kld
class RandomShiftsAug(nn.Module):
def __init__(self, pad_h, pad_w):
super().__init__()
self.pad_h = pad_h
self.pad_w = pad_w
print(f"RandomShiftsAug: pad_h {pad_h}, pad_w {pad_w}")
def forward(self, x):
orignal_shape = x.shape
n, h, w = x.shape[0], x.shape[-2], x.shape[-1] # n,T,M,C,H,W
x = x.view(n, -1, h, w) # n,T*M*C,H,W
padding = (
self.pad_w,
self.pad_w,
self.pad_h,
self.pad_h,
) # left, right, top, bottom padding
x = F.pad(x, padding, mode="replicate")
h_pad, w_pad = h + 2 * self.pad_h, w + 2 * self.pad_w
eps_h = 1.0 / h_pad
eps_w = 1.0 / w_pad
arange_h = torch.linspace(
-1.0 + eps_h, 1.0 - eps_h, h_pad, device=x.device, dtype=x.dtype
)[:h]
arange_w = torch.linspace(
-1.0 + eps_w, 1.0 - eps_w, w_pad, device=x.device, dtype=x.dtype
)[:w]
arange_h = arange_h.unsqueeze(1).repeat(1, w).unsqueeze(2) # h w 1
arange_w = arange_w.unsqueeze(1).repeat(1, h).unsqueeze(2) # w h 1
# print(arange_h.shape, arange_w.shape)
base_grid = torch.cat([arange_w.transpose(1, 0), arange_h], dim=2) # [H, W, 2]
base_grid = base_grid.unsqueeze(0).repeat(
n, 1, 1, 1
) # Repeat for batch [B, H, W, 2]
shift_h = torch.randint(
0, 2 * self.pad_h + 1, size=(n, 1, 1, 1), device=x.device, dtype=x.dtype
).float()
shift_w = torch.randint(
0, 2 * self.pad_w + 1, size=(n, 1, 1, 1), device=x.device, dtype=x.dtype
).float()
shift_h *= 2.0 / h_pad
shift_w *= 2.0 / w_pad
grid = base_grid + torch.cat([shift_w, shift_h], dim=3)
x = F.grid_sample(x, grid, padding_mode="zeros", align_corners=False)
return x.view(orignal_shape)
def get_norm_stats(state, action):
all_qpos_data = torch.from_numpy(np.array(state))
all_action_data = torch.from_numpy(np.array(action))
# normalize action data
action_mean = all_action_data.mean(dim=[0], keepdim=True)
action_std = all_action_data.std(dim=[0], keepdim=True)
action_std = torch.clip(action_std, 1e-2, np.inf) # clipping
action_max = torch.amax(all_action_data, dim=[0], keepdim=True)
action_min = torch.amin(all_action_data, dim=[0], keepdim=True)
# normalize qpos data
qpos_mean = all_qpos_data.mean(dim=[0], keepdim=True)
qpos_std = all_qpos_data.std(dim=[0], keepdim=True)
qpos_std = torch.clip(qpos_std, 1e-2, np.inf) # clipping
stats = {
"action_mean": action_mean.numpy().squeeze(),
"action_std": action_std.numpy().squeeze(),
"action_max": action_max.numpy().squeeze(),
"action_min": action_min.numpy().squeeze(),
"qpos_mean": qpos_mean.numpy().squeeze(),
"qpos_std": qpos_std.numpy().squeeze(),
}
return stats
class EpisodicDataset_Unified_Multiview(Dataset):
def __init__(self, data_path_list, camera_names, chunk_size,stats, img_aug=False):
super(EpisodicDataset_Unified_Multiview).__init__()
self.data_path_list = data_path_list
self.camera_names = camera_names
self.chunk_size = chunk_size
self.norm_stats = stats
self.img_aug = img_aug
self.ColorJitter = transforms.ColorJitter(
brightness=0.2,contrast=0.2,saturation=0.2,hue=0.01)
def __len__(self):
return len(self.data_path_list) * 16
def __getitem__(self, path_index):
# qpos = np.concatenate((root['/arm/jointStatePosition/masterLeft'][()], root['/arm/jointStatePosition/masterRight'][()]), axis=-1)
# actions = np.concatenate((root['/arm/jointStatePosition/puppetLeft']
path_index = path_index % len(self.data_path_list) # ensure index is within bounds
example_path = self.data_path_list[path_index]
with h5py.File(example_path, 'r') as f:
action = f['observations']['qpos'][()] # jointStatePosition/master
qpos = f['action'][()] # jointStatePosition/puppet
parent_path = os.path.dirname(example_path)
Instruction_path = os.path.join(parent_path, 'instructions')
# randomly sample instruction file
instruction_files = [f for f in os.listdir(Instruction_path) if fnmatch.fnmatch(f, '*.pt')]
instruction_file = os.path.join(Instruction_path, np.random.choice(instruction_files))
instruction = torch.load(instruction_file, weights_only=False) # num_token * 4096 tensor
# randomly sample an episode inex
episode_len = action.shape[0]
index = np.random.randint(0, episode_len)
obs_qpos = qpos[index:index + 1]
# stack images
with h5py.File(example_path, 'r') as f:
camera_list = []
for camera_name in self.camera_names:
cam_jpeg_code = f['observations']['images'][camera_name][index]
cam_image = cv2.imdecode(np.frombuffer(cam_jpeg_code, np.uint8), cv2.IMREAD_COLOR) # rgb
camera_list.append(cam_image)
obs_img = np.stack(camera_list, axis=0) # shape: (N_views, H, W, C)
original_action_shape = (self.chunk_size, *action.shape[1:])
gt_action = np.zeros(original_action_shape)
action_len = min(self.chunk_size, episode_len - index)
gt_action[:action_len] = action[
index : index + action_len
]
is_pad = np.zeros(self.chunk_size)
is_pad[action_len:] = 1
# construct observations tensor type
image_data = torch.from_numpy(obs_img).unsqueeze(0).float() # (history_steps+1, 1, H, W, 3) add num_view
image_data = image_data.permute(0, 1, 4, 2, 3) # (1, N_views, 3, H, W)
qpos_data = torch.from_numpy(obs_qpos).float()# .unsqueeze(0) # (1, 14)
action_data = torch.from_numpy(gt_action).float() # (chunk_size, 14)
is_pad = torch.from_numpy(is_pad).bool() # (chunk_size, )
instruction_data = instruction.mean(0).float() # (4096)
# normalize image and qpos
image_data = image_data / 255.0 # Normalize to [0, 1] T N C H W
qpos_data = (qpos_data - self.norm_stats["qpos_mean"]) / self.norm_stats[
"qpos_std"
]
if self.img_aug and random.random() < 0.25:
for t in range(image_data.shape[0]):
for i in range(image_data.shape[1]):
image_data[t, i] =self.ColorJitter(image_data[t, i])
return image_data, qpos_data.float(), action_data, is_pad, instruction_data
def load_data_unified(
data_dir='/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/RDT/training_data/rdt_real_multitask',
camera_names=['cam_high', 'cam_left_wrist', 'cam_right_wrist'],
batch_size_train=32,
chunk_size=100,
img_aug=False,
fintune=False,
):
HDF5_file_path = []
for root, _, files in os.walk(data_dir, followlinks=True):
for filename in files:
if filename.endswith('.hdf5'):
HDF5_file_path.append(os.path.join(root, filename))
print(f"Loading data from {data_dir} with {len(HDF5_file_path)} episodes and batch size {batch_size_train}")
state_list = []
action_list = []
# qpos = np.concatenate((root['/arm/jointStatePosition/masterLeft'][()], root['/arm/jointStatePosition/masterRight'][()]), axis=-1)
# actions = np.concatenate((root['/arm/jointStatePosition/puppetLeft']
for p in tqdm(HDF5_file_path, desc="Data statics collection"):
with h5py.File(p, 'r') as f:
action = f['observations']['qpos'][()]
qpos = f['action'][()]
state_list.append(qpos)
action_list.append(action)
states = np.concatenate(state_list, axis=0)
actions = np.concatenate(action_list, axis=0)
if fintune:
# load stats from pretrain path 1590 episodes
pretrain_stats_path = '/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/ACT_DP_multitask/checkpoints/real_pretrain_50_2000/act_dp/dataset_stats.pkl'
with open(pretrain_stats_path, 'rb') as f:
stats = pickle.load(f)
print(f"Loaded stats from {pretrain_stats_path}")
else:
stats = get_norm_stats(states, actions)
for key, value in stats.items():
print(f"{key}: {value}")
train_dataset = EpisodicDataset_Unified_Multiview(
data_path_list=HDF5_file_path,
camera_names=camera_names,
chunk_size=chunk_size,
stats=stats,
img_aug=img_aug,
)
traind_data_loader = DataLoader(
train_dataset,
batch_size=batch_size_train,
shuffle=True,
num_workers=8,
pin_memory=True,
)
return traind_data_loader,None,None, stats
def compute_dict_mean(epoch_dicts):
result = {k: None for k in epoch_dicts[0]}
num_items = len(epoch_dicts)
for k in result:
value_sum = 0
for epoch_dict in epoch_dicts:
value_sum += epoch_dict[k]
result[k] = value_sum / num_items
return result
def detach_dict(d):
new_d = dict()
for k, v in d.items():
new_d[k] = v.detach()
return new_d
# def set_seed(seed):
# torch.manual_seed(seed)
# np.random.seed(seed)
import random
def set_seed(seed):
random.seed(seed) #
np.random.seed(seed) #
torch.manual_seed(seed) #
torch.cuda.manual_seed(seed) #
torch.cuda.manual_seed_all(seed) #
def get_cosine_schedule_with_warmup(
optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([~torch.optim.Optimizer]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (int):
The number of steps for the warmup phase.
num_training_steps (int):
The total number of training steps.
num_cycles (float, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (int, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
torch.optim.lr_scheduler.LambdaLR with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_constant_schedule(optimizer, last_epoch: int = -1) -> LambdaLR:
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
def normalize_data(action_data, stats, norm_type, data_type="action"):
if norm_type == "minmax":
action_max = torch.from_numpy(stats[data_type + "_max"]).float().to(action_data.device)
action_min = torch.from_numpy(stats[data_type + "_min"]).float().to(action_data.device)
action_data = (action_data - action_min) / (action_max - action_min) * 2 - 1
elif norm_type == "gaussian":
action_mean = torch.from_numpy(stats[data_type + "_mean"]).float().to(action_data.device)
action_std = torch.from_numpy(stats[data_type + "_std"]).float().to(action_data.device)
action_data = (action_data - action_mean) / action_std
return action_data
def convert_weight(obj):
newmodel = OrderedDict()
for k, v in obj.items():
if k.startswith("module."):
newmodel[k[7:]] = v
else:
newmodel[k] = v
return newmodel
if __name__ == "__main__":
train_dataloader,_,_,stats = load_data_unified(
data_dir='/home/algo/anyrobot/Anyrobot_RoboTwin_Challenge/policy/RDT/training_data/rdt_real_multitask',
camera_names=['cam_high', 'cam_left_wrist', 'cam_right_wrist'],
batch_size_train=32,
chunk_size=100,
img_aug=True,
)
for i, (image_data, qpos_data, action_data, is_pad, instruction_data) in enumerate(
tqdm(train_dataloader, desc="Data loading")
):
if i == 0:
print(f"Batch {i}:")
print(f"Image data shape: {image_data.shape} {image_data.max()}")
print(f"Qpos data shape: {qpos_data.shape} {qpos_data.max()}" )
print(f"Action data shape: {action_data.shape} {action_data.max()}")
print(f"Is pad shape: {is_pad.shape}")
print(f"Instruction data shape: {instruction_data.shape}")
continue
|