Upload 108 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- ACT_DP_multitask/README.md +16 -0
- ACT_DP_multitask/base.yaml +71 -0
- ACT_DP_multitask/detr/LICENSE +201 -0
- ACT_DP_multitask/detr/README.md +9 -0
- ACT_DP_multitask/detr/__pycache__/main.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/__pycache__/main.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/detr.egg-info/PKG-INFO +17 -0
- ACT_DP_multitask/detr/detr.egg-info/SOURCES.txt +37 -0
- ACT_DP_multitask/detr/detr.egg-info/dependency_links.txt +1 -0
- ACT_DP_multitask/detr/detr.egg-info/top_level.txt +2 -0
- ACT_DP_multitask/detr/main.py +763 -0
- ACT_DP_multitask/detr/models/__init__.py +60 -0
- ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/resnet_film.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-310.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-37.pyc +0 -0
- ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/backbone.py +209 -0
- ACT_DP_multitask/detr/models/detr_vae.py +0 -0
- ACT_DP_multitask/detr/models/detr_vae_nfp.py +523 -0
- ACT_DP_multitask/detr/models/mask_former/__init__.py +19 -0
- ACT_DP_multitask/detr/models/mask_former/__pycache__/__init__.cpython-38.pyc +0 -0
- ACT_DP_multitask/detr/models/mask_former/config.py +85 -0
- ACT_DP_multitask/detr/models/mask_former/mask_former_model.py +304 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/__init__.py +5 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/backbone/__init__.py +1 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/backbone/swin.py +768 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/criterion.py +187 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/heads/__init__.py +1 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/heads/mask_former_head.py +119 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/heads/per_pixel_baseline.py +243 -0
- ACT_DP_multitask/detr/models/mask_former/modeling/heads/pixel_decoder.py +294 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
ACT_DP_multitask/detr/models/mr_mg/media/model.gif filter=lfs diff=lfs merge=lfs -text
|
ACT_DP_multitask/README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Install
|
2 |
+
```
|
3 |
+
cd policy/ACT-DP-TP
|
4 |
+
cd detr
|
5 |
+
pip install -e .
|
6 |
+
cd ..
|
7 |
+
cd Cosmos-Tokenizer
|
8 |
+
pip install -e .
|
9 |
+
#upload policy/ACT-DP-TP/Cosmos-Tokenizer/pretrained_ckpts
|
10 |
+
```
|
11 |
+
### Command
|
12 |
+
```
|
13 |
+
#data_dir: policy/ACT-DP-TP/data_zarr
|
14 |
+
cd policy/ACT-DP-TP
|
15 |
+
bash scripts/act_dp_tp/train.sh bottle_adjust 300 20 20 0
|
16 |
+
```
|
ACT_DP_multitask/base.yaml
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
common:
|
2 |
+
# The number of historical images
|
3 |
+
img_history_size: 2
|
4 |
+
# The number of future actions to predict
|
5 |
+
action_chunk_size: 64
|
6 |
+
# The number of cameras to be used in the model
|
7 |
+
num_cameras: 3
|
8 |
+
# Dimension for state/action, we use the same space for both state and action
|
9 |
+
# This MUST be equal to configs/state_vec.py
|
10 |
+
state_dim: 128
|
11 |
+
|
12 |
+
|
13 |
+
dataset:
|
14 |
+
# We will extract the data from raw dataset
|
15 |
+
# and store them in the disk buffer by producer
|
16 |
+
# When training, we will read the data
|
17 |
+
# randomly from the buffer by consumer
|
18 |
+
# The producer will replace the data which has been
|
19 |
+
# read by the consumer with new data
|
20 |
+
|
21 |
+
# The path to the buffer (at least 400GB)
|
22 |
+
buf_path: /path/to/buffer
|
23 |
+
# The number of chunks in the buffer
|
24 |
+
buf_num_chunks: 512
|
25 |
+
# The number of samples (step rather than episode) in each chunk
|
26 |
+
buf_chunk_size: 512
|
27 |
+
|
28 |
+
# We will filter the episodes with length less than `epsd_len_thresh_low`
|
29 |
+
epsd_len_thresh_low: 32
|
30 |
+
# For those more than `epsd_len_thresh_high`,
|
31 |
+
# we will randomly sample `epsd_len_thresh_high` steps each time we load the episode
|
32 |
+
# to better balance the training datasets
|
33 |
+
epsd_len_thresh_high: 2048
|
34 |
+
# How to fit the image size
|
35 |
+
image_aspect_ratio: pad
|
36 |
+
# Maximum number of language tokens
|
37 |
+
tokenizer_max_length: 1024
|
38 |
+
|
39 |
+
model:
|
40 |
+
# Config for condition adpators
|
41 |
+
lang_adaptor: mlp2x_gelu
|
42 |
+
img_adaptor: mlp2x_gelu
|
43 |
+
state_adaptor: mlp3x_gelu
|
44 |
+
lang_token_dim: 4096
|
45 |
+
img_token_dim: 1152
|
46 |
+
# Dim of action or proprioception vector
|
47 |
+
# A `state` refers to an action or a proprioception vector
|
48 |
+
state_token_dim: 128
|
49 |
+
# Config for RDT structure
|
50 |
+
rdt:
|
51 |
+
# 1B: num_head 32 hidden_size 2048
|
52 |
+
hidden_size: 2048
|
53 |
+
depth: 28
|
54 |
+
num_heads: 32
|
55 |
+
cond_pos_embed_type: multimodal
|
56 |
+
# For noise scheduler
|
57 |
+
noise_scheduler:
|
58 |
+
type: ddpm
|
59 |
+
num_train_timesteps: 1000
|
60 |
+
num_inference_timesteps: 5
|
61 |
+
beta_schedule: squaredcos_cap_v2 # Critical choice
|
62 |
+
prediction_type: sample
|
63 |
+
clip_sample: False
|
64 |
+
# For EMA (params averaging)
|
65 |
+
# We do not use EMA currently
|
66 |
+
ema:
|
67 |
+
update_after_step: 0
|
68 |
+
inv_gamma: 1.0
|
69 |
+
power: 0.75
|
70 |
+
min_value: 0.0
|
71 |
+
max_value: 0.9999
|
ACT_DP_multitask/detr/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2020 - present, Facebook, Inc
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
ACT_DP_multitask/detr/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This part of the codebase is modified from DETR https://github.com/facebookresearch/detr under APACHE 2.0.
|
2 |
+
|
3 |
+
@article{Carion2020EndtoEndOD,
|
4 |
+
title={End-to-End Object Detection with Transformers},
|
5 |
+
author={Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko},
|
6 |
+
journal={ArXiv},
|
7 |
+
year={2020},
|
8 |
+
volume={abs/2005.12872}
|
9 |
+
}
|
ACT_DP_multitask/detr/__pycache__/main.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
ACT_DP_multitask/detr/__pycache__/main.cpython-37.pyc
ADDED
Binary file (15.9 kB). View file
|
|
ACT_DP_multitask/detr/detr.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.2
|
2 |
+
Name: detr
|
3 |
+
Version: 0.0.0
|
4 |
+
License: MIT License
|
5 |
+
License-File: LICENSE
|
6 |
+
Dynamic: description
|
7 |
+
Dynamic: license
|
8 |
+
|
9 |
+
This part of the codebase is modified from DETR https://github.com/facebookresearch/detr under APACHE 2.0.
|
10 |
+
|
11 |
+
@article{Carion2020EndtoEndOD,
|
12 |
+
title={End-to-End Object Detection with Transformers},
|
13 |
+
author={Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko},
|
14 |
+
journal={ArXiv},
|
15 |
+
year={2020},
|
16 |
+
volume={abs/2005.12872}
|
17 |
+
}
|
ACT_DP_multitask/detr/detr.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LICENSE
|
2 |
+
README.md
|
3 |
+
setup.py
|
4 |
+
detr.egg-info/PKG-INFO
|
5 |
+
detr.egg-info/SOURCES.txt
|
6 |
+
detr.egg-info/dependency_links.txt
|
7 |
+
detr.egg-info/top_level.txt
|
8 |
+
models/__init__.py
|
9 |
+
models/backbone.py
|
10 |
+
models/detr_vae.py
|
11 |
+
models/detr_vae_nfp.py
|
12 |
+
models/position_encoding.py
|
13 |
+
models/transformer.py
|
14 |
+
models/vision_transformer.py
|
15 |
+
models/mask_former/__init__.py
|
16 |
+
models/mask_former/config.py
|
17 |
+
models/mask_former/mask_former_model.py
|
18 |
+
models/mask_former/test_time_augmentation.py
|
19 |
+
models/mask_former/modeling/__init__.py
|
20 |
+
models/mask_former/modeling/criterion.py
|
21 |
+
models/mask_former/modeling/matcher.py
|
22 |
+
models/mask_former/modeling/backbone/__init__.py
|
23 |
+
models/mask_former/modeling/backbone/swin.py
|
24 |
+
models/mask_former/modeling/heads/__init__.py
|
25 |
+
models/mask_former/modeling/heads/mask_former_head.py
|
26 |
+
models/mask_former/modeling/heads/per_pixel_baseline.py
|
27 |
+
models/mask_former/modeling/heads/pixel_decoder.py
|
28 |
+
models/mask_former/modeling/transformer/__init__.py
|
29 |
+
models/mask_former/modeling/transformer/position_encoding.py
|
30 |
+
models/mask_former/modeling/transformer/transformer.py
|
31 |
+
models/mask_former/modeling/transformer/transformer_predictor.py
|
32 |
+
models/mask_former/utils/__init__.py
|
33 |
+
models/mask_former/utils/misc.py
|
34 |
+
util/__init__.py
|
35 |
+
util/box_ops.py
|
36 |
+
util/misc.py
|
37 |
+
util/plot_utils.py
|
ACT_DP_multitask/detr/detr.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
ACT_DP_multitask/detr/detr.egg-info/top_level.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
models
|
2 |
+
util
|
ACT_DP_multitask/detr/main.py
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
import argparse
|
3 |
+
from pathlib import Path
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from .models import *
|
8 |
+
|
9 |
+
import IPython
|
10 |
+
|
11 |
+
e = IPython.embed
|
12 |
+
|
13 |
+
|
14 |
+
def get_args_parser():
|
15 |
+
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
|
16 |
+
parser.add_argument("--ckpt_path", type=str, default='policy/ACT_DP_multitask/checkpoints/real_fintune_50_2000/act_dp')
|
17 |
+
parser.add_argument("--eval_ckpts", default=0, type=int, help="eval_ckpts")
|
18 |
+
parser.add_argument("--eval_video_log", action="store_true")
|
19 |
+
parser.add_argument("--action_interval", default=1, type=int)
|
20 |
+
parser.add_argument("--lr", default=1e-4, type=float) # will be overridden
|
21 |
+
parser.add_argument("--lr_backbone", default=1e-5, type=float) # will be overridden
|
22 |
+
parser.add_argument(
|
23 |
+
"--lr_schedule_type", default="constant", type=str, help="lr_schedule_type"
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--num_episodes", type=int, help="num_epochs", default=0, required=False
|
27 |
+
)
|
28 |
+
parser.add_argument("--batch_size", default=2, type=int) # not used
|
29 |
+
parser.add_argument(
|
30 |
+
"--samples_per_epoch",
|
31 |
+
default=1,
|
32 |
+
type=int,
|
33 |
+
help="samples_per_epoch",
|
34 |
+
required=False,
|
35 |
+
)
|
36 |
+
parser.add_argument("--weight_decay", default=1e-4, type=float)
|
37 |
+
parser.add_argument("--epochs", default=300, type=int) # not used
|
38 |
+
parser.add_argument("--lr_drop", default=200, type=int) # not used
|
39 |
+
parser.add_argument(
|
40 |
+
"--clip_max_norm",
|
41 |
+
default=0.1,
|
42 |
+
type=float, # not used
|
43 |
+
help="gradient clipping max norm",
|
44 |
+
)
|
45 |
+
parser.add_argument("--norm_type", default="meanstd", type=str, help="norm_type")
|
46 |
+
parser.add_argument(
|
47 |
+
"--num_train_steps", default=50, type=int, help="num_train_steps"
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--num_inference_steps", default=10, type=int, help="num_inference_steps"
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--schedule_type", default="DDIM", type=str, help="scheduler_type"
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--imitate_weight", default=1, type=int, help="imitate Weight", required=False
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--prediction_type", default="sample", type=str, help="prediction_type"
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--beta_schedule", default="squaredcos_cap_v2", type=str, help="prediction_type"
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--diffusion_timestep_type",
|
66 |
+
default="cat",
|
67 |
+
type=str,
|
68 |
+
help="diffusion_timestep_type, cat or add, how to combine timestep",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--condition_type",
|
72 |
+
default="cross_attention",
|
73 |
+
type=str,
|
74 |
+
help="diffusion_condition_type, cross_attention or adaLN, how to combine observation condition",
|
75 |
+
)
|
76 |
+
parser.add_argument("--attention_type", default="v0", help="decoder attention type")
|
77 |
+
parser.add_argument(
|
78 |
+
"--causal_mask", action="store_true", help="use causal mask for diffusion"
|
79 |
+
)
|
80 |
+
parser.add_argument("--loss_type", default="l2", type=str, help="loss_type")
|
81 |
+
parser.add_argument(
|
82 |
+
"--disable_vae_latent",
|
83 |
+
action="store_true",
|
84 |
+
help="Use VAE latent space by default",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--disable_resnet",
|
88 |
+
action="store_true",
|
89 |
+
help="Use resnet to encode obs image by default",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--disable_scale",
|
93 |
+
action="store_true",
|
94 |
+
help="scale model up",
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--inference_num_queries",
|
98 |
+
default=0,
|
99 |
+
type=int,
|
100 |
+
help="inference_num_queries",
|
101 |
+
required=False,
|
102 |
+
) # predict_frame
|
103 |
+
parser.add_argument(
|
104 |
+
"--disable_resize", action="store_true", help="if resize jpeg image"
|
105 |
+
)
|
106 |
+
parser.add_argument(
|
107 |
+
"--share_decoder", action="store_true", help="jpeg and action share decoder"
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--resize_rate",
|
111 |
+
default=1,
|
112 |
+
type=int,
|
113 |
+
help="resize rate for pixel prediction",
|
114 |
+
required=False,
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--image_downsample_rate",
|
118 |
+
default=1,
|
119 |
+
type=int,
|
120 |
+
help="image_downsample_rate",
|
121 |
+
required=False,
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--temporal_downsample_rate",
|
125 |
+
default=1,
|
126 |
+
type=int,
|
127 |
+
help="temporal_downsample_rate",
|
128 |
+
required=False,
|
129 |
+
)
|
130 |
+
# Model parameters external
|
131 |
+
parser.add_argument("--test_num", default=50, type=int, help="test_num")
|
132 |
+
parser.add_argument("--save_episode", action="store_true")
|
133 |
+
parser.add_argument(
|
134 |
+
"--depth_mode",
|
135 |
+
default="None",
|
136 |
+
type=str,
|
137 |
+
help="use depth/depth+coordinate/None. ALL/Single/None",
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--pc_mode", default="pc_camera", type=str, help="pc_world/pc_camera"
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--disable_multi_view", action="store_true", help="Use multi-view rgb images"
|
144 |
+
)
|
145 |
+
# * Backbone
|
146 |
+
parser.add_argument(
|
147 |
+
"--backbone",
|
148 |
+
default="resnet18",
|
149 |
+
type=str, # will be overridden
|
150 |
+
help="Name of the convolutional backbone to use",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--dilation",
|
154 |
+
action="store_true",
|
155 |
+
help="If true, we replace stride with dilation in the last convolutional block (DC5)",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--position_embedding",
|
159 |
+
default="sine",
|
160 |
+
type=str,
|
161 |
+
choices=("sine", "learned"),
|
162 |
+
help="Type of positional embedding to use on top of the image features",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--camera_names",
|
166 |
+
default=[],
|
167 |
+
type=list, # will be overridden
|
168 |
+
help="A list of camera names",
|
169 |
+
)
|
170 |
+
|
171 |
+
# * Transformer
|
172 |
+
parser.add_argument(
|
173 |
+
"--enc_layers",
|
174 |
+
default=4,
|
175 |
+
type=int, # will be overridden
|
176 |
+
help="Number of encoding layers in the transformer",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--dec_layers",
|
180 |
+
default=6,
|
181 |
+
type=int, # will be overridden
|
182 |
+
help="Number of decoding layers in the transformer",
|
183 |
+
)
|
184 |
+
parser.add_argument(
|
185 |
+
"--dim_feedforward",
|
186 |
+
default=2048,
|
187 |
+
type=int, # will be overridden
|
188 |
+
help="Intermediate size of the feedforward layers in the transformer blocks",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--hidden_dim",
|
192 |
+
default=256,
|
193 |
+
type=int, # will be overridden
|
194 |
+
help="Size of the embeddings (dimension of the transformer)",
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
"--dropout", default=0.1, type=float, help="Dropout applied in the transformer"
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
"--nheads",
|
201 |
+
default=8,
|
202 |
+
type=int, # will be overridden
|
203 |
+
help="Number of attention heads inside the transformer's attentions",
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--num_queries",
|
207 |
+
default=400,
|
208 |
+
type=int, # will be overridden
|
209 |
+
help="Number of query slots",
|
210 |
+
)
|
211 |
+
parser.add_argument("--pre_norm", action="store_true")
|
212 |
+
|
213 |
+
# # * Segmentation
|
214 |
+
parser.add_argument(
|
215 |
+
"--masks",
|
216 |
+
action="store_true",
|
217 |
+
help="Train segmentation head if the flag is provided",
|
218 |
+
)
|
219 |
+
|
220 |
+
# repeat args in imitate_episodes just to avoid error. Will not be used
|
221 |
+
parser.add_argument("--eval", action="store_true")
|
222 |
+
parser.add_argument("--onscreen_render", action="store_true")
|
223 |
+
parser.add_argument(
|
224 |
+
"--ckpt_dir", action="store", type=str, help="ckpt_dir", required=False
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--policy_class",
|
228 |
+
action="store",
|
229 |
+
type=str,
|
230 |
+
help="policy_class, capitalize",
|
231 |
+
required=False,
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--task_name", action="store", type=str, help="task_name", required=False
|
235 |
+
)
|
236 |
+
parser.add_argument("--seed", action="store", type=int, help="seed", required=False)
|
237 |
+
parser.add_argument(
|
238 |
+
"--num_epochs", action="store", type=int, help="num_epochs", required=False
|
239 |
+
)
|
240 |
+
parser.add_argument(
|
241 |
+
"--kl_weight", action="store", type=int, help="KL Weight", required=False
|
242 |
+
)
|
243 |
+
parser.add_argument(
|
244 |
+
"--save_epoch",
|
245 |
+
action="store",
|
246 |
+
type=int,
|
247 |
+
help="save_epoch",
|
248 |
+
default=500,
|
249 |
+
required=False,
|
250 |
+
)
|
251 |
+
parser.add_argument(
|
252 |
+
"--chunk_size", action="store", type=int, help="chunk_size", required=False
|
253 |
+
)
|
254 |
+
parser.add_argument(
|
255 |
+
"--history_step", default=0, type=int, help="history_step", required=False
|
256 |
+
)
|
257 |
+
parser.add_argument(
|
258 |
+
"--predict_frame", default=0, type=int, help="predict_frame", required=False
|
259 |
+
)
|
260 |
+
# add image_width and image_height
|
261 |
+
parser.add_argument(
|
262 |
+
"--image_width", default=320, type=int, help="image_width", required=False
|
263 |
+
)
|
264 |
+
parser.add_argument(
|
265 |
+
"--image_height", default=240, type=int, help="image_height", required=False
|
266 |
+
)
|
267 |
+
parser.add_argument(
|
268 |
+
"--predict_only_last", action="store_true"
|
269 |
+
) # only predict the last #predict_frame frame
|
270 |
+
parser.add_argument("--temporal_agg", action="store_true")
|
271 |
+
# visual tokenizer
|
272 |
+
parser.add_argument(
|
273 |
+
"--tokenizer_model_type",
|
274 |
+
default="DV",
|
275 |
+
type=str,
|
276 |
+
help="tokenizer_model_type, DV,CV,DI,CI",
|
277 |
+
)
|
278 |
+
parser.add_argument(
|
279 |
+
"--tokenizer_model_temporal_rate",
|
280 |
+
default=8,
|
281 |
+
type=int,
|
282 |
+
help="tokenizer_model_temporal_rate, 4,8",
|
283 |
+
)
|
284 |
+
parser.add_argument(
|
285 |
+
"--tokenizer_model_spatial_rate",
|
286 |
+
default=16,
|
287 |
+
type=int,
|
288 |
+
help="tokenizer_model_spatial_rate, 8,16",
|
289 |
+
)
|
290 |
+
parser.add_argument(
|
291 |
+
"--tokenizer_model_name",
|
292 |
+
default="Cosmos-Tokenizer-DV4x8x8",
|
293 |
+
type=str,
|
294 |
+
help="tokenizer_model_name",
|
295 |
+
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--prediction_weight",
|
298 |
+
default=1,
|
299 |
+
type=float,
|
300 |
+
help="pred token Weight",
|
301 |
+
required=False,
|
302 |
+
)
|
303 |
+
parser.add_argument(
|
304 |
+
"--token_dim", default=6, type=int, help="token_dim", required=False
|
305 |
+
) # token_pe_type
|
306 |
+
parser.add_argument(
|
307 |
+
"--patch_size", default=5, type=int, help="patch_size", required=False
|
308 |
+
) # token_pe_type
|
309 |
+
parser.add_argument(
|
310 |
+
"--token_pe_type",
|
311 |
+
default="learned",
|
312 |
+
type=str,
|
313 |
+
help="token_pe_type",
|
314 |
+
required=False,
|
315 |
+
)
|
316 |
+
parser.add_argument("--nf", action="store_true")
|
317 |
+
parser.add_argument("--pretrain", action="store_true", required=False)
|
318 |
+
parser.add_argument("--is_wandb", action="store_true")
|
319 |
+
parser.add_argument("--mae", action="store_true")
|
320 |
+
# parser.add_argument('--seg', action='store_true')
|
321 |
+
# parser.add_argument('--seg_next', action='store_true')
|
322 |
+
|
323 |
+
# parameters for distributed training
|
324 |
+
parser.add_argument(
|
325 |
+
"--resume",
|
326 |
+
default="",
|
327 |
+
type=str,
|
328 |
+
metavar="PATH",
|
329 |
+
help="path to latest checkpoint (default: none)",
|
330 |
+
)
|
331 |
+
parser.add_argument(
|
332 |
+
"--world-size",
|
333 |
+
default=-1,
|
334 |
+
type=int,
|
335 |
+
help="number of nodes for distributed training",
|
336 |
+
)
|
337 |
+
parser.add_argument(
|
338 |
+
"--rank", default=-1, type=int, help="node rank for distributed training"
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"--dist-url",
|
342 |
+
default="tcp://224.66.41.62:23456",
|
343 |
+
type=str,
|
344 |
+
help="url used to set up distributed training",
|
345 |
+
)
|
346 |
+
parser.add_argument(
|
347 |
+
"--dist-backend", default="nccl", type=str, help="distributed backend"
|
348 |
+
)
|
349 |
+
# parser.add_argument(
|
350 |
+
# "--seed", default=None, type=int, help="seed for initializing training. "
|
351 |
+
# )
|
352 |
+
parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.")
|
353 |
+
parser.add_argument(
|
354 |
+
"--multiprocessing-distributed",
|
355 |
+
action="store_true",
|
356 |
+
help="Use multi-processing distributed training to launch "
|
357 |
+
"N processes per node, which has N GPUs. This is the "
|
358 |
+
"fastest way to use PyTorch for either single node or "
|
359 |
+
"multi node data parallel training",
|
360 |
+
)
|
361 |
+
parser.add_argument(
|
362 |
+
"-j",
|
363 |
+
"--workers",
|
364 |
+
default=32,
|
365 |
+
type=int,
|
366 |
+
metavar="N",
|
367 |
+
help="number of data loading workers (default: 32)",
|
368 |
+
)
|
369 |
+
|
370 |
+
return parser
|
371 |
+
|
372 |
+
|
373 |
+
def build_ACT_model_and_optimizer(args_override):
|
374 |
+
parser = argparse.ArgumentParser(
|
375 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
376 |
+
)
|
377 |
+
args = parser.parse_args()
|
378 |
+
|
379 |
+
for k, v in args_override.items():
|
380 |
+
setattr(args, k, v)
|
381 |
+
|
382 |
+
if args_override["segmentation"]:
|
383 |
+
model = build_ACT_Seg_model(args)
|
384 |
+
else:
|
385 |
+
model = build_ACT_model(args)
|
386 |
+
model.cuda()
|
387 |
+
|
388 |
+
param_dicts = [
|
389 |
+
{
|
390 |
+
"params": [
|
391 |
+
p
|
392 |
+
for n, p in model.named_parameters()
|
393 |
+
if "backbone" not in n and p.requires_grad
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"params": [
|
398 |
+
p
|
399 |
+
for n, p in model.named_parameters()
|
400 |
+
if "backbone" in n and p.requires_grad
|
401 |
+
],
|
402 |
+
"lr": args.lr_backbone,
|
403 |
+
},
|
404 |
+
]
|
405 |
+
optimizer = torch.optim.AdamW(
|
406 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
407 |
+
)
|
408 |
+
|
409 |
+
return model, optimizer
|
410 |
+
|
411 |
+
|
412 |
+
def build_ACTDiffusion_model_and_optimizer(args_override):
|
413 |
+
parser = argparse.ArgumentParser(
|
414 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
415 |
+
)
|
416 |
+
args = parser.parse_args()
|
417 |
+
for k, v in args_override.items():
|
418 |
+
setattr(args, k, v)
|
419 |
+
# print('args',args) # get
|
420 |
+
model = build_ACTDiffusion_model(args)
|
421 |
+
model.cuda()
|
422 |
+
|
423 |
+
param_dicts = [
|
424 |
+
{
|
425 |
+
"params": [
|
426 |
+
p
|
427 |
+
for n, p in model.named_parameters()
|
428 |
+
if "backbone" not in n and p.requires_grad
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"params": [
|
433 |
+
p
|
434 |
+
for n, p in model.named_parameters()
|
435 |
+
if "backbone" in n and p.requires_grad
|
436 |
+
],
|
437 |
+
"lr": args.lr_backbone,
|
438 |
+
},
|
439 |
+
]
|
440 |
+
optimizer = torch.optim.AdamW(
|
441 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
442 |
+
)
|
443 |
+
|
444 |
+
return model, optimizer
|
445 |
+
|
446 |
+
|
447 |
+
def build_ACTDiffusion_tactile_model_and_optimizer(args_override):
|
448 |
+
parser = argparse.ArgumentParser(
|
449 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
450 |
+
)
|
451 |
+
args = parser.parse_args()
|
452 |
+
for k, v in args_override.items():
|
453 |
+
setattr(args, k, v)
|
454 |
+
# print('args',args) # get
|
455 |
+
model = build_ACTDiffusion_tactile_model(args)
|
456 |
+
model.cuda()
|
457 |
+
|
458 |
+
param_dicts = [
|
459 |
+
{
|
460 |
+
"params": [
|
461 |
+
p
|
462 |
+
for n, p in model.named_parameters()
|
463 |
+
if "backbone" not in n and p.requires_grad
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"params": [
|
468 |
+
p
|
469 |
+
for n, p in model.named_parameters()
|
470 |
+
if "backbone" in n and p.requires_grad
|
471 |
+
],
|
472 |
+
"lr": args.lr_backbone,
|
473 |
+
},
|
474 |
+
]
|
475 |
+
optimizer = torch.optim.AdamW(
|
476 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
477 |
+
)
|
478 |
+
|
479 |
+
return model, optimizer
|
480 |
+
|
481 |
+
|
482 |
+
def build_diffusion_tp_model_and_optimizer(args_override):
|
483 |
+
parser = argparse.ArgumentParser(
|
484 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
485 |
+
)
|
486 |
+
args = parser.parse_args()
|
487 |
+
for k, v in args_override.items():
|
488 |
+
setattr(args, k, v)
|
489 |
+
# print('args',args) # get
|
490 |
+
model = build_ACTDiffusion_tp_model(args)
|
491 |
+
model.cuda()
|
492 |
+
|
493 |
+
return model # , optimizer
|
494 |
+
|
495 |
+
|
496 |
+
def build_diffusion_pp_model_and_optimizer(args_override):
|
497 |
+
parser = argparse.ArgumentParser(
|
498 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
499 |
+
)
|
500 |
+
args = parser.parse_args()
|
501 |
+
for k, v in args_override.items():
|
502 |
+
setattr(args, k, v)
|
503 |
+
# print('args',args) # get
|
504 |
+
model = build_ACTDiffusion_pp_model(args)
|
505 |
+
model.cuda()
|
506 |
+
|
507 |
+
return model
|
508 |
+
|
509 |
+
|
510 |
+
# discard
|
511 |
+
|
512 |
+
|
513 |
+
def build_ACT_NF_model_and_optimizer(args_override):
|
514 |
+
parser = argparse.ArgumentParser(
|
515 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
516 |
+
)
|
517 |
+
args = parser.parse_args()
|
518 |
+
|
519 |
+
for k, v in args_override.items():
|
520 |
+
setattr(args, k, v)
|
521 |
+
|
522 |
+
model = build_ACT_NF_model(args)
|
523 |
+
model.cuda()
|
524 |
+
|
525 |
+
param_dicts = [
|
526 |
+
{
|
527 |
+
"params": [
|
528 |
+
p
|
529 |
+
for n, p in model.named_parameters()
|
530 |
+
if "backbone" not in n and p.requires_grad
|
531 |
+
]
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"params": [
|
535 |
+
p
|
536 |
+
for n, p in model.named_parameters()
|
537 |
+
if "backbone" in n and p.requires_grad
|
538 |
+
],
|
539 |
+
"lr": args.lr_backbone,
|
540 |
+
},
|
541 |
+
]
|
542 |
+
optimizer = torch.optim.AdamW(
|
543 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
544 |
+
)
|
545 |
+
|
546 |
+
return model, optimizer
|
547 |
+
|
548 |
+
|
549 |
+
def build_ACT_Dino_model_and_optimizer(args_override):
|
550 |
+
parser = argparse.ArgumentParser(
|
551 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
552 |
+
)
|
553 |
+
args = parser.parse_args()
|
554 |
+
|
555 |
+
for k, v in args_override.items():
|
556 |
+
setattr(args, k, v)
|
557 |
+
|
558 |
+
model = build_ACT_dino_model(args)
|
559 |
+
model.cuda()
|
560 |
+
|
561 |
+
param_dicts = [
|
562 |
+
{
|
563 |
+
"params": [
|
564 |
+
p
|
565 |
+
for n, p in model.named_parameters()
|
566 |
+
if "backbone" not in n and p.requires_grad
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"params": [
|
571 |
+
p
|
572 |
+
for n, p in model.named_parameters()
|
573 |
+
if "backbone" in n and p.requires_grad
|
574 |
+
],
|
575 |
+
"lr": args.lr_backbone,
|
576 |
+
},
|
577 |
+
]
|
578 |
+
optimizer = torch.optim.AdamW(
|
579 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
580 |
+
)
|
581 |
+
|
582 |
+
return model, optimizer
|
583 |
+
|
584 |
+
|
585 |
+
def build_ACT_jpeg_model_and_optimizer(args_override):
|
586 |
+
parser = argparse.ArgumentParser(
|
587 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
588 |
+
)
|
589 |
+
args = parser.parse_args()
|
590 |
+
|
591 |
+
for k, v in args_override.items():
|
592 |
+
setattr(args, k, v)
|
593 |
+
|
594 |
+
model = build_ACT_jpeg_model(args)
|
595 |
+
model.cuda()
|
596 |
+
|
597 |
+
param_dicts = [
|
598 |
+
{
|
599 |
+
"params": [
|
600 |
+
p
|
601 |
+
for n, p in model.named_parameters()
|
602 |
+
if "backbone" not in n and p.requires_grad
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"params": [
|
607 |
+
p
|
608 |
+
for n, p in model.named_parameters()
|
609 |
+
if "backbone" in n and p.requires_grad
|
610 |
+
],
|
611 |
+
"lr": args.lr_backbone,
|
612 |
+
},
|
613 |
+
]
|
614 |
+
optimizer = torch.optim.AdamW(
|
615 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
616 |
+
)
|
617 |
+
|
618 |
+
return model, optimizer
|
619 |
+
|
620 |
+
|
621 |
+
def build_ACT_jpeg_diffusion_model_and_optimizer(args_override):
|
622 |
+
parser = argparse.ArgumentParser(
|
623 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
624 |
+
)
|
625 |
+
args = parser.parse_args()
|
626 |
+
|
627 |
+
for k, v in args_override.items():
|
628 |
+
setattr(args, k, v)
|
629 |
+
|
630 |
+
model = build_ACT_jpeg_diffusion_model(args)
|
631 |
+
model.cuda()
|
632 |
+
|
633 |
+
param_dicts = [
|
634 |
+
{
|
635 |
+
"params": [
|
636 |
+
p
|
637 |
+
for n, p in model.named_parameters()
|
638 |
+
if "backbone" not in n and p.requires_grad
|
639 |
+
]
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"params": [
|
643 |
+
p
|
644 |
+
for n, p in model.named_parameters()
|
645 |
+
if "backbone" in n and p.requires_grad
|
646 |
+
],
|
647 |
+
"lr": args.lr_backbone,
|
648 |
+
},
|
649 |
+
]
|
650 |
+
optimizer = torch.optim.AdamW(
|
651 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
652 |
+
)
|
653 |
+
|
654 |
+
return model, optimizer
|
655 |
+
|
656 |
+
|
657 |
+
def build_ACT_jpeg_diffusion_seperate_model_and_optimizer(args_override):
|
658 |
+
parser = argparse.ArgumentParser(
|
659 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
660 |
+
)
|
661 |
+
args = parser.parse_args()
|
662 |
+
|
663 |
+
for k, v in args_override.items():
|
664 |
+
setattr(args, k, v)
|
665 |
+
|
666 |
+
model = build_ACT_jpeg_diffusion_seperate_model(args)
|
667 |
+
model.cuda()
|
668 |
+
|
669 |
+
param_dicts = [
|
670 |
+
{
|
671 |
+
"params": [
|
672 |
+
p
|
673 |
+
for n, p in model.named_parameters()
|
674 |
+
if "backbone" not in n and p.requires_grad
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"params": [
|
679 |
+
p
|
680 |
+
for n, p in model.named_parameters()
|
681 |
+
if "backbone" in n and p.requires_grad
|
682 |
+
],
|
683 |
+
"lr": args.lr_backbone,
|
684 |
+
},
|
685 |
+
]
|
686 |
+
optimizer = torch.optim.AdamW(
|
687 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
688 |
+
)
|
689 |
+
|
690 |
+
return model, optimizer
|
691 |
+
|
692 |
+
|
693 |
+
def build_nf_diffusion_seperate_model_and_optimizer(args_override):
|
694 |
+
parser = argparse.ArgumentParser(
|
695 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
696 |
+
)
|
697 |
+
args = parser.parse_args()
|
698 |
+
|
699 |
+
for k, v in args_override.items():
|
700 |
+
setattr(args, k, v)
|
701 |
+
|
702 |
+
model = build_nf_diffusion_seperate_model(args)
|
703 |
+
model.cuda()
|
704 |
+
|
705 |
+
param_dicts = [
|
706 |
+
{
|
707 |
+
"params": [
|
708 |
+
p
|
709 |
+
for n, p in model.named_parameters()
|
710 |
+
if "backbone" not in n and p.requires_grad
|
711 |
+
]
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"params": [
|
715 |
+
p
|
716 |
+
for n, p in model.named_parameters()
|
717 |
+
if "backbone" in n and p.requires_grad
|
718 |
+
],
|
719 |
+
"lr": args.lr_backbone,
|
720 |
+
},
|
721 |
+
]
|
722 |
+
optimizer = torch.optim.AdamW(
|
723 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
724 |
+
)
|
725 |
+
|
726 |
+
return model, optimizer
|
727 |
+
|
728 |
+
|
729 |
+
def build_CNNMLP_model_and_optimizer(args_override):
|
730 |
+
parser = argparse.ArgumentParser(
|
731 |
+
"DETR training and evaluation script", parents=[get_args_parser()]
|
732 |
+
)
|
733 |
+
args = parser.parse_args()
|
734 |
+
|
735 |
+
for k, v in args_override.items():
|
736 |
+
setattr(args, k, v)
|
737 |
+
|
738 |
+
model = build_CNNMLP_model(args)
|
739 |
+
model.cuda()
|
740 |
+
|
741 |
+
param_dicts = [
|
742 |
+
{
|
743 |
+
"params": [
|
744 |
+
p
|
745 |
+
for n, p in model.named_parameters()
|
746 |
+
if "backbone" not in n and p.requires_grad
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"params": [
|
751 |
+
p
|
752 |
+
for n, p in model.named_parameters()
|
753 |
+
if "backbone" in n and p.requires_grad
|
754 |
+
],
|
755 |
+
"lr": args.lr_backbone,
|
756 |
+
},
|
757 |
+
]
|
758 |
+
optimizer = torch.optim.AdamW(
|
759 |
+
param_dicts, lr=args.lr, weight_decay=args.weight_decay
|
760 |
+
)
|
761 |
+
|
762 |
+
return model, optimizer
|
763 |
+
|
ACT_DP_multitask/detr/models/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
from .detr_vae import build as build_vae
|
3 |
+
from .detr_vae import build_seg as build_vae_seg
|
4 |
+
from .detr_vae_nfp import build as build_vae_nfp
|
5 |
+
from .detr_vae import build_cnnmlp as build_cnnmlp
|
6 |
+
from .detr_vae import build_dino as build_dino
|
7 |
+
from .detr_vae import build_jpeg as build_jpeg
|
8 |
+
from .detr_vae import build_jpeg_diffusion as build_jpeg_diffusion
|
9 |
+
from .detr_vae import build_jpeg_diffusion_seperate as build_jpeg_diffusion_seperate
|
10 |
+
from .detr_vae import build_nf_diffusion_seperate as build_nf_diffusion_seperate
|
11 |
+
from .detr_vae import build_diffusion as build_diffusion
|
12 |
+
from .detr_vae import build_diffusion_tp as build_diffusion_tp
|
13 |
+
from .detr_vae import build_diffusion_tp_with_dual_visual_token as build_diffusion_tp_with_dual_visual_token
|
14 |
+
from .detr_vae import build_diffusion_pp as build_diffusion_pp
|
15 |
+
from .detr_vae import build_diffusion_tactile as build_diffusion_tactile
|
16 |
+
|
17 |
+
def build_ACT_model(args):
|
18 |
+
return build_vae(args)
|
19 |
+
|
20 |
+
def build_CNNMLP_model(args):
|
21 |
+
return build_cnnmlp(args)
|
22 |
+
|
23 |
+
def build_ACTDiffusion_model(args):
|
24 |
+
return build_diffusion(args)
|
25 |
+
|
26 |
+
def build_ACTDiffusion_tactile_model(args):
|
27 |
+
return build_diffusion_tactile(args)
|
28 |
+
|
29 |
+
def build_ACTDiffusion_tp_model(args):
|
30 |
+
if args.diffusion_timestep_type == 'vis_cat': # HARDCODE whether use tokenizer feature for decoder & action prediction
|
31 |
+
print('Using dual visual token for decoder and action prediction')
|
32 |
+
return build_diffusion_tp_with_dual_visual_token(args)
|
33 |
+
else:
|
34 |
+
return build_diffusion_tp(args)
|
35 |
+
|
36 |
+
def build_ACTDiffusion_pp_model(args):
|
37 |
+
return build_diffusion_pp(args)
|
38 |
+
|
39 |
+
# discard
|
40 |
+
def build_ACT_NF_model(args):
|
41 |
+
return build_vae_nfp(args)
|
42 |
+
|
43 |
+
def build_ACT_Seg_model(args):
|
44 |
+
return build_vae_seg(args)
|
45 |
+
|
46 |
+
def build_ACT_dino_model(args):
|
47 |
+
return build_dino(args)
|
48 |
+
|
49 |
+
def build_ACT_jpeg_model(args):
|
50 |
+
return build_jpeg(args)
|
51 |
+
|
52 |
+
def build_ACT_jpeg_diffusion_model(args):
|
53 |
+
return build_jpeg_diffusion(args)
|
54 |
+
|
55 |
+
def build_ACT_jpeg_diffusion_seperate_model(args):
|
56 |
+
return build_jpeg_diffusion_seperate(args)
|
57 |
+
|
58 |
+
def build_nf_diffusion_seperate_model(args):
|
59 |
+
return build_nf_diffusion_seperate(args)
|
60 |
+
|
ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.47 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (2.55 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (2.2 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-310.pyc
ADDED
Binary file (6.66 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-37.pyc
ADDED
Binary file (4.32 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/backbone.cpython-38.pyc
ADDED
Binary file (4.35 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-310.pyc
ADDED
Binary file (50.1 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-37.pyc
ADDED
Binary file (57.9 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae.cpython-38.pyc
ADDED
Binary file (40.8 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-37.pyc
ADDED
Binary file (15.1 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/detr_vae_nfp.cpython-38.pyc
ADDED
Binary file (13.4 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-310.pyc
ADDED
Binary file (3.61 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-37.pyc
ADDED
Binary file (3.55 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/position_encoding.cpython-38.pyc
ADDED
Binary file (3.56 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/resnet_film.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (39 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-37.pyc
ADDED
Binary file (40.5 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/transformer.cpython-38.pyc
ADDED
Binary file (24.5 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-37.pyc
ADDED
Binary file (13.5 kB). View file
|
|
ACT_DP_multitask/detr/models/__pycache__/vision_transformer.cpython-38.pyc
ADDED
Binary file (13.2 kB). View file
|
|
ACT_DP_multitask/detr/models/backbone.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
Backbone modules.
|
4 |
+
"""
|
5 |
+
from collections import OrderedDict
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision
|
10 |
+
from torch import nn
|
11 |
+
from torchvision.models._utils import IntermediateLayerGetter
|
12 |
+
from typing import Dict, List
|
13 |
+
from typing import Any, Dict, List, Mapping, Optional
|
14 |
+
from ..util.misc import NestedTensor, is_main_process
|
15 |
+
|
16 |
+
from .position_encoding import build_position_encoding
|
17 |
+
from .resnet_film import resnet18 as resnet18_film
|
18 |
+
from .resnet_film import resnet34 as resnet34_film
|
19 |
+
import IPython
|
20 |
+
e = IPython.embed
|
21 |
+
|
22 |
+
class FrozenBatchNorm2d(torch.nn.Module):
|
23 |
+
"""
|
24 |
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
25 |
+
|
26 |
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
27 |
+
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
|
28 |
+
produce nans.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, n):
|
32 |
+
super(FrozenBatchNorm2d, self).__init__()
|
33 |
+
self.register_buffer("weight", torch.ones(n))
|
34 |
+
self.register_buffer("bias", torch.zeros(n))
|
35 |
+
self.register_buffer("running_mean", torch.zeros(n))
|
36 |
+
self.register_buffer("running_var", torch.ones(n))
|
37 |
+
|
38 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
39 |
+
missing_keys, unexpected_keys, error_msgs):
|
40 |
+
num_batches_tracked_key = prefix + 'num_batches_tracked'
|
41 |
+
if num_batches_tracked_key in state_dict:
|
42 |
+
del state_dict[num_batches_tracked_key]
|
43 |
+
|
44 |
+
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
45 |
+
state_dict, prefix, local_metadata, strict,
|
46 |
+
missing_keys, unexpected_keys, error_msgs)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
# move reshapes to the beginning
|
50 |
+
# to make it fuser-friendly
|
51 |
+
w = self.weight.reshape(1, -1, 1, 1)
|
52 |
+
b = self.bias.reshape(1, -1, 1, 1)
|
53 |
+
rv = self.running_var.reshape(1, -1, 1, 1)
|
54 |
+
rm = self.running_mean.reshape(1, -1, 1, 1)
|
55 |
+
eps = 1e-5
|
56 |
+
scale = w * (rv + eps).rsqrt()
|
57 |
+
bias = b - rm * scale
|
58 |
+
return x * scale + bias
|
59 |
+
|
60 |
+
|
61 |
+
class BackboneBase(nn.Module):
|
62 |
+
|
63 |
+
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool):
|
64 |
+
super().__init__()
|
65 |
+
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
|
66 |
+
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
67 |
+
# parameter.requires_grad_(False)
|
68 |
+
if return_interm_layers:
|
69 |
+
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
70 |
+
else:
|
71 |
+
return_layers = {'layer4': "0"}
|
72 |
+
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
73 |
+
self.num_channels = num_channels
|
74 |
+
|
75 |
+
def forward(self, tensor):
|
76 |
+
xs = self.body(tensor)
|
77 |
+
return xs
|
78 |
+
# out: Dict[str, NestedTensor] = {}
|
79 |
+
# for name, x in xs.items():
|
80 |
+
# m = tensor_list.mask
|
81 |
+
# assert m is not None
|
82 |
+
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
83 |
+
# out[name] = NestedTensor(x, mask)
|
84 |
+
# return out
|
85 |
+
|
86 |
+
|
87 |
+
class Backbone(BackboneBase):
|
88 |
+
"""ResNet backbone with frozen BatchNorm."""
|
89 |
+
def __init__(self, name: str,
|
90 |
+
train_backbone: bool,
|
91 |
+
return_interm_layers: bool,
|
92 |
+
dilation: bool):
|
93 |
+
backbone = getattr(torchvision.models, name)(
|
94 |
+
replace_stride_with_dilation=[False, False, dilation],
|
95 |
+
pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d) # pretrained # TODO do we want frozen batch_norm??
|
96 |
+
num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
|
97 |
+
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
|
98 |
+
|
99 |
+
# ==== ResNet Backbone ====
|
100 |
+
class ResNetFilmBackbone(nn.Module):
|
101 |
+
def __init__(self, embedding_name: str, pretrained: bool = False,
|
102 |
+
film_config: Optional[Mapping[str, Any]] = None):
|
103 |
+
super().__init__()
|
104 |
+
self._pretrained = pretrained
|
105 |
+
weights = 'IMAGENET1K_V1' if pretrained else None
|
106 |
+
if embedding_name in ('resnet34_film', 'resnet34'):
|
107 |
+
backbone = resnet34_film(weights=weights, film_config=film_config, pretrained=pretrained)
|
108 |
+
embedding_dim = 512
|
109 |
+
elif embedding_name in ('resnet18_film', 'resnet18'):
|
110 |
+
backbone = resnet18_film(weights=weights, film_config=film_config, pretrained=pretrained)
|
111 |
+
embedding_dim = 512
|
112 |
+
else:
|
113 |
+
raise NotImplementedError
|
114 |
+
|
115 |
+
self.resnet_film_model = backbone
|
116 |
+
self._embedding_dim = embedding_dim
|
117 |
+
self.resnet_film_model.fc = nn.Identity()
|
118 |
+
self.resnet_film_model.avgpool = nn.Identity()
|
119 |
+
|
120 |
+
self.num_channels = self._embedding_dim
|
121 |
+
|
122 |
+
# FiLM config
|
123 |
+
self.film_config = film_config
|
124 |
+
if film_config is not None and film_config['use']:
|
125 |
+
film_models = []
|
126 |
+
for layer_idx, num_blocks in enumerate(self.resnet_film_model.layers):
|
127 |
+
if layer_idx in film_config['use_in_layers']:
|
128 |
+
num_planes = self.resnet_film_model.film_planes[layer_idx]
|
129 |
+
film_model_layer = nn.Linear(
|
130 |
+
film_config['task_embedding_dim'], num_blocks * 2 * num_planes)
|
131 |
+
else:
|
132 |
+
film_model_layer = None
|
133 |
+
film_models.append(film_model_layer)
|
134 |
+
|
135 |
+
self.film_models = nn.ModuleList(film_models)
|
136 |
+
|
137 |
+
def forward(self, x, texts: Optional[List[str]] = None, task_emb: Optional[torch.Tensor] = None, **kwargs):
|
138 |
+
film_outputs = None
|
139 |
+
if self.film_config is not None and self.film_config['use']:
|
140 |
+
film_outputs = []
|
141 |
+
for layer_idx, num_blocks in enumerate(self.resnet_film_model.layers):
|
142 |
+
if self.film_config['use'] and self.film_models[layer_idx] is not None:
|
143 |
+
film_features = self.film_models[layer_idx](task_emb)
|
144 |
+
else:
|
145 |
+
film_features = None
|
146 |
+
film_outputs.append(film_features)
|
147 |
+
return self.resnet_film_model(x, film_features=film_outputs, flatten=False)
|
148 |
+
|
149 |
+
@property
|
150 |
+
def embed_dim(self):
|
151 |
+
return self._embedding_dim
|
152 |
+
|
153 |
+
|
154 |
+
# class Joiner(nn.Sequential):
|
155 |
+
# def __init__(self, backbone, position_embedding):
|
156 |
+
# super().__init__(backbone, position_embedding)
|
157 |
+
|
158 |
+
# def forward(self, tensor_list: NestedTensor, task_emb:NestedTensor):
|
159 |
+
# xs = self[0](tensor_list)
|
160 |
+
# out: List[NestedTensor] = []
|
161 |
+
# pos = []
|
162 |
+
# for name, x in xs.items():
|
163 |
+
# out.append(x)
|
164 |
+
# # position encoding
|
165 |
+
# pos.append(self[1](x).to(x.dtype))
|
166 |
+
|
167 |
+
# return out, pos
|
168 |
+
|
169 |
+
class Joiner(nn.Sequential):
|
170 |
+
def __init__(self, backbone, position_embedding):
|
171 |
+
super().__init__(backbone, position_embedding)
|
172 |
+
|
173 |
+
def forward(self, tensor_list: NestedTensor, task_emb: Optional[Any] = None):
|
174 |
+
if task_emb is not None:
|
175 |
+
xs = self[0](tensor_list, task_emb=task_emb)
|
176 |
+
# Make a dictionary out of the last layer outputs since we don't have IntermediateLayerGetter
|
177 |
+
xs = {'0': xs}
|
178 |
+
else:
|
179 |
+
xs = self[0](tensor_list)
|
180 |
+
out: List[NestedTensor] = []
|
181 |
+
pos = []
|
182 |
+
for name, x in xs.items():
|
183 |
+
out.append(x)
|
184 |
+
# position encoding
|
185 |
+
pos.append(self[1](x).to(x.dtype))
|
186 |
+
|
187 |
+
return out, pos
|
188 |
+
|
189 |
+
def build_backbone(args):
|
190 |
+
position_embedding = build_position_encoding(args)
|
191 |
+
train_backbone = args.lr_backbone > 0
|
192 |
+
return_interm_layers = args.masks
|
193 |
+
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
194 |
+
model = Joiner(backbone, position_embedding)
|
195 |
+
model.num_channels = backbone.num_channels
|
196 |
+
return model
|
197 |
+
|
198 |
+
def build_film_backbone(args):
|
199 |
+
position_embedding = build_position_encoding(args)
|
200 |
+
film_config = {
|
201 |
+
'use': True,
|
202 |
+
'use_in_layers': [1, 2, 3],
|
203 |
+
'task_embedding_dim': 512,
|
204 |
+
'film_planes': [64, 128, 256, 512],
|
205 |
+
}
|
206 |
+
backbone = ResNetFilmBackbone(args.backbone, film_config=film_config)
|
207 |
+
model = Joiner(backbone, position_embedding)
|
208 |
+
model.num_channels = backbone.num_channels
|
209 |
+
return model
|
ACT_DP_multitask/detr/models/detr_vae.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ACT_DP_multitask/detr/models/detr_vae_nfp.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
DETR model and criterion classes.
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.autograd import Variable
|
8 |
+
from .backbone import build_backbone
|
9 |
+
from .transformer import build_transformer, TransformerEncoder, TransformerEncoderLayer
|
10 |
+
from .vision_transformer import Block, get_2d_sincos_pos_embed, get_2d_sincos_pos_embed_v2
|
11 |
+
from .mr_mg.policy.model.vision_transformer import vit_base
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
import IPython
|
16 |
+
e = IPython.embed
|
17 |
+
|
18 |
+
|
19 |
+
def reparametrize(mu, logvar):
|
20 |
+
std = logvar.div(2).exp()
|
21 |
+
eps = Variable(std.data.new(std.size()).normal_())
|
22 |
+
return mu + std * eps
|
23 |
+
|
24 |
+
|
25 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
26 |
+
def get_position_angle_vec(position):
|
27 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
28 |
+
|
29 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
30 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
31 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
32 |
+
|
33 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
34 |
+
|
35 |
+
|
36 |
+
class DETRVAE(nn.Module):
|
37 |
+
""" This is the DETR module that performs object detection """
|
38 |
+
def __init__(self, backbones, transformer, encoder, state_dim, num_queries, camera_names):
|
39 |
+
""" Initializes the model.
|
40 |
+
Parameters:
|
41 |
+
backbones: torch module of the backbone to be used. See backbone.py
|
42 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
43 |
+
state_dim: robot state dimension of the environment
|
44 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
45 |
+
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
46 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
47 |
+
"""
|
48 |
+
super().__init__()
|
49 |
+
self.num_queries = num_queries
|
50 |
+
self.camera_names = camera_names
|
51 |
+
self.transformer = transformer
|
52 |
+
self.encoder = encoder
|
53 |
+
hidden_dim = transformer.d_model
|
54 |
+
self.action_head = nn.Linear(hidden_dim, state_dim)
|
55 |
+
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
56 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
57 |
+
if backbones is not None:
|
58 |
+
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
59 |
+
self.backbones = nn.ModuleList(backbones)
|
60 |
+
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
61 |
+
else:
|
62 |
+
# input_dim = 14 + 7 # robot_state + env_state
|
63 |
+
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
64 |
+
self.input_proj_env_state = nn.Linear(7, hidden_dim)
|
65 |
+
self.pos = torch.nn.Embedding(2, hidden_dim)
|
66 |
+
self.backbones = None
|
67 |
+
|
68 |
+
# encoder extra parameters
|
69 |
+
self.latent_dim = 32 # final size of latent z # TODO tune
|
70 |
+
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
71 |
+
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
72 |
+
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
73 |
+
self.latent_proj = nn.Linear(hidden_dim, self.latent_dim*2) # project hidden state to latent std, var
|
74 |
+
self.register_buffer('pos_table', get_sinusoid_encoding_table(1+1+num_queries, hidden_dim)) # [CLS], qpos, a_seq
|
75 |
+
|
76 |
+
# decoder extra parameters
|
77 |
+
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
78 |
+
self.additional_pos_embed = nn.Embedding(2, hidden_dim) # learned position embedding for proprio and latent
|
79 |
+
|
80 |
+
# settings for next frame prediction
|
81 |
+
self.patch_size = 16
|
82 |
+
# self.image_size = 224
|
83 |
+
# self.img_h, self.img_w = 128, 160
|
84 |
+
self.img_h, self.img_w = 224, 224
|
85 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
|
86 |
+
# self.n_patch = (self.image_size//self.patch_size)**2
|
87 |
+
self.k = 1 # number of next frames
|
88 |
+
self.n_patch = (self.img_h//self.patch_size)*(self.img_w//self.patch_size)*(self.k)
|
89 |
+
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.n_patch, hidden_dim), requires_grad=False) # (1, n_patch, h)
|
90 |
+
self.patch_embed = nn.Embedding(self.n_patch, hidden_dim)
|
91 |
+
self.decoder_embed = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
92 |
+
|
93 |
+
decoder_depth = 2 # hardcode
|
94 |
+
self.decoder_blocks = nn.ModuleList([
|
95 |
+
Block(hidden_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
|
96 |
+
for i in range(decoder_depth)])
|
97 |
+
|
98 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
99 |
+
self.decoder_pred = nn.Linear(hidden_dim, self.patch_size**2 * 3, bias=True) # decoder to patch
|
100 |
+
|
101 |
+
# decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], (self.image_size//self.patch_size), cls_token=False)
|
102 |
+
decoder_pos_embed = get_2d_sincos_pos_embed_v2(self.decoder_pos_embed.shape[-1], (self.img_h//self.patch_size, self.img_w//self.patch_size))
|
103 |
+
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0).repeat(1,self.k,1))
|
104 |
+
|
105 |
+
# fwd_params = sum(p.numel() for p in self.decoder_blocks.parameters() if p.requires_grad)
|
106 |
+
|
107 |
+
|
108 |
+
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
109 |
+
"""
|
110 |
+
qpos: batch, qpos_dim
|
111 |
+
image: batch, num_cam, channel, height, width
|
112 |
+
env_state: None
|
113 |
+
actions: batch, seq, action_dim
|
114 |
+
"""
|
115 |
+
is_training = actions is not None # train or val
|
116 |
+
bs, _ = qpos.shape
|
117 |
+
### Obtain latent z from action sequence
|
118 |
+
if is_training:
|
119 |
+
# project action sequence to embedding dim, and concat with a CLS token
|
120 |
+
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
121 |
+
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
|
122 |
+
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
123 |
+
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
124 |
+
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
125 |
+
encoder_input = torch.cat([cls_embed, qpos_embed, action_embed], axis=1) # (bs, seq+1, hidden_dim)
|
126 |
+
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
127 |
+
# do not mask cls token
|
128 |
+
cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
129 |
+
is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
130 |
+
# obtain position embedding
|
131 |
+
pos_embed = self.pos_table.clone().detach()
|
132 |
+
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
133 |
+
# query model
|
134 |
+
encoder_output = self.encoder(encoder_input, pos=pos_embed, src_key_padding_mask=is_pad)
|
135 |
+
encoder_output = encoder_output[0] # take cls output only
|
136 |
+
latent_info = self.latent_proj(encoder_output)
|
137 |
+
mu = latent_info[:, :self.latent_dim]
|
138 |
+
logvar = latent_info[:, self.latent_dim:]
|
139 |
+
latent_sample = reparametrize(mu, logvar)
|
140 |
+
latent_input = self.latent_out_proj(latent_sample)
|
141 |
+
else:
|
142 |
+
mu = logvar = None
|
143 |
+
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
144 |
+
latent_input = self.latent_out_proj(latent_sample)
|
145 |
+
|
146 |
+
if self.backbones is not None:
|
147 |
+
# Image observation features and position embeddings
|
148 |
+
all_cam_features = []
|
149 |
+
all_cam_pos = []
|
150 |
+
if is_training:
|
151 |
+
next_frame_images = image[:,1:]
|
152 |
+
image = image[:,:1]
|
153 |
+
for cam_id, cam_name in enumerate(self.camera_names):
|
154 |
+
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED?
|
155 |
+
features = features[0] # take the last layer feature
|
156 |
+
pos = pos[0]
|
157 |
+
all_cam_features.append(self.input_proj(features))
|
158 |
+
all_cam_pos.append(pos)
|
159 |
+
# proprioception features
|
160 |
+
proprio_input = self.input_proj_robot_state(qpos)
|
161 |
+
# fold camera dimension into width dimension
|
162 |
+
src = torch.cat(all_cam_features, axis=3)
|
163 |
+
pos = torch.cat(all_cam_pos, axis=3)
|
164 |
+
query_embed = torch.cat([self.query_embed.weight, self.patch_embed.weight], axis=0)
|
165 |
+
hs = self.transformer(src, None, query_embed, pos, latent_input, proprio_input, self.additional_pos_embed.weight)[0]
|
166 |
+
# hs = self.transformer(src, None, self.query_embed.weight, pos, latent_input, proprio_input, self.additional_pos_embed.weight)[0]
|
167 |
+
else:
|
168 |
+
qpos = self.input_proj_robot_state(qpos)
|
169 |
+
env_state = self.input_proj_env_state(env_state)
|
170 |
+
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
171 |
+
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
|
172 |
+
a_hat = self.action_head(hs[:,:self.num_queries])
|
173 |
+
is_pad_hat = self.is_pad_head(hs[:,:self.num_queries])
|
174 |
+
|
175 |
+
# next frame prediction
|
176 |
+
mask_token = self.mask_token
|
177 |
+
mask_tokens = mask_token.repeat(bs, self.n_patch, 1)
|
178 |
+
mask_tokens = mask_tokens + self.decoder_pos_embed.repeat(bs, 1, 1)
|
179 |
+
|
180 |
+
obs_pred = self.decoder_embed(hs[:,self.num_queries:])
|
181 |
+
obs_pred_ = torch.cat([obs_pred, mask_tokens], dim=1)
|
182 |
+
for blk in self.decoder_blocks:
|
183 |
+
obs_pred_ = blk(obs_pred_)
|
184 |
+
obs_pred_ = self.decoder_norm(obs_pred_)
|
185 |
+
obs_preds = self.decoder_pred(obs_pred_)
|
186 |
+
obs_preds = obs_preds[:,self.n_patch:]
|
187 |
+
|
188 |
+
if is_training:
|
189 |
+
# next_frame_images = image[:,1:]
|
190 |
+
next_frame_images = nn.functional.interpolate(next_frame_images.reshape(bs, self.k*3, 224, 224), size=(self.img_h, self.img_w))
|
191 |
+
p = self.patch_size
|
192 |
+
h_p = self.img_h // p
|
193 |
+
w_p = self.img_w // p
|
194 |
+
obs_targets = next_frame_images.reshape(shape=(bs, self.k, 3, h_p, p, w_p, p))
|
195 |
+
obs_targets = obs_targets.permute(0,1,3,5,4,6,2)
|
196 |
+
obs_targets = obs_targets.reshape(shape=(bs, h_p*w_p*self.k, (p**2)*3))
|
197 |
+
else:
|
198 |
+
obs_targets = torch.zeros_like(obs_preds)
|
199 |
+
|
200 |
+
return a_hat, is_pad_hat, [mu, logvar], [obs_preds, obs_targets]
|
201 |
+
|
202 |
+
|
203 |
+
class DETRVAE_MAE(nn.Module):
|
204 |
+
""" This is the DETR module that performs object detection """
|
205 |
+
def __init__(self, backbones, transformer, encoder, state_dim, num_queries, camera_names):
|
206 |
+
""" Initializes the model.
|
207 |
+
Parameters:
|
208 |
+
backbones: torch module of the backbone to be used. See backbone.py
|
209 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
210 |
+
state_dim: robot state dimension of the environment
|
211 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
212 |
+
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
213 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
214 |
+
"""
|
215 |
+
super().__init__()
|
216 |
+
self.num_queries = num_queries
|
217 |
+
self.camera_names = camera_names
|
218 |
+
self.transformer = transformer
|
219 |
+
self.encoder = encoder
|
220 |
+
hidden_dim = transformer.d_model
|
221 |
+
self.action_head = nn.Linear(hidden_dim, state_dim)
|
222 |
+
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
223 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
224 |
+
|
225 |
+
# self.model_mae = vits.__dict__['vit_base'](patch_size=16, num_classes=0)
|
226 |
+
self.model_mae = vit_base(patch_size=16, num_classes=0)
|
227 |
+
mae_ckpt = 'checkpoints/pretrained/mae_pretrain_vit_base.pth'
|
228 |
+
checkpoint = torch.load(mae_ckpt, map_location='cpu')
|
229 |
+
self.model_mae.load_state_dict(checkpoint['model'], strict=True)
|
230 |
+
print('Load MAE pretrained model')
|
231 |
+
# for name, p in self.model_mae.named_parameters():
|
232 |
+
# p.requires_grad = False
|
233 |
+
|
234 |
+
if backbones is not None:
|
235 |
+
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
236 |
+
self.backbones = nn.ModuleList(backbones)
|
237 |
+
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
238 |
+
else:
|
239 |
+
# input_dim = 14 + 7 # robot_state + env_state
|
240 |
+
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
241 |
+
self.input_proj_env_state = nn.Linear(7, hidden_dim)
|
242 |
+
self.pos = torch.nn.Embedding(2, hidden_dim)
|
243 |
+
self.backbones = None
|
244 |
+
|
245 |
+
# encoder extra parameters
|
246 |
+
self.latent_dim = 32 # final size of latent z # TODO tune
|
247 |
+
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
248 |
+
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
249 |
+
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
250 |
+
self.latent_proj = nn.Linear(hidden_dim, self.latent_dim*2) # project hidden state to latent std, var
|
251 |
+
self.register_buffer('pos_table', get_sinusoid_encoding_table(1+1+num_queries, hidden_dim)) # [CLS], qpos, a_seq
|
252 |
+
|
253 |
+
# decoder extra parameters
|
254 |
+
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
255 |
+
self.additional_pos_embed = nn.Embedding(2, hidden_dim) # learned position embedding for proprio and latent
|
256 |
+
|
257 |
+
# settings for next frame prediction
|
258 |
+
self.patch_size = 16
|
259 |
+
self.img_h, self.img_w = 224, 224
|
260 |
+
self.n_patch = (self.img_h//self.patch_size)*(self.img_w//self.patch_size)
|
261 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
|
262 |
+
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.n_patch, hidden_dim), requires_grad=False) # (1, n_patch, h)
|
263 |
+
self.patch_embed = nn.Embedding(self.n_patch, hidden_dim)
|
264 |
+
self.decoder_embed = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
265 |
+
|
266 |
+
decoder_depth = 2 # hardcode
|
267 |
+
self.decoder_blocks = nn.ModuleList([
|
268 |
+
Block(hidden_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
|
269 |
+
for i in range(decoder_depth)])
|
270 |
+
|
271 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
272 |
+
self.decoder_pred = nn.Linear(hidden_dim, self.patch_size**2 * 3, bias=True) # decoder to patch
|
273 |
+
|
274 |
+
decoder_pos_embed = get_2d_sincos_pos_embed_v2(self.decoder_pos_embed.shape[-1], (self.img_h//self.patch_size, self.img_w//self.patch_size))
|
275 |
+
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
|
276 |
+
|
277 |
+
|
278 |
+
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
279 |
+
"""
|
280 |
+
qpos: batch, qpos_dim
|
281 |
+
image: batch, num_cam, channel, height, width
|
282 |
+
env_state: None
|
283 |
+
actions: batch, seq, action_dim
|
284 |
+
"""
|
285 |
+
is_training = actions is not None # train or val
|
286 |
+
bs, _ = qpos.shape
|
287 |
+
### Obtain latent z from action sequence
|
288 |
+
if is_training:
|
289 |
+
# project action sequence to embedding dim, and concat with a CLS token
|
290 |
+
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
291 |
+
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
|
292 |
+
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
293 |
+
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
294 |
+
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
295 |
+
encoder_input = torch.cat([cls_embed, qpos_embed, action_embed], axis=1) # (bs, seq+1, hidden_dim)
|
296 |
+
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
297 |
+
# do not mask cls token
|
298 |
+
cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
299 |
+
is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
300 |
+
# obtain position embedding
|
301 |
+
pos_embed = self.pos_table.clone().detach()
|
302 |
+
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
303 |
+
# query model
|
304 |
+
encoder_output = self.encoder(encoder_input, pos=pos_embed, src_key_padding_mask=is_pad)
|
305 |
+
encoder_output = encoder_output[0] # take cls output only
|
306 |
+
latent_info = self.latent_proj(encoder_output)
|
307 |
+
mu = latent_info[:, :self.latent_dim]
|
308 |
+
logvar = latent_info[:, self.latent_dim:]
|
309 |
+
latent_sample = reparametrize(mu, logvar)
|
310 |
+
latent_input = self.latent_out_proj(latent_sample)
|
311 |
+
else:
|
312 |
+
mu = logvar = None
|
313 |
+
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
314 |
+
latent_input = self.latent_out_proj(latent_sample)
|
315 |
+
|
316 |
+
if self.backbones is not None:
|
317 |
+
# Image observation features and position embeddings
|
318 |
+
all_cam_features = []
|
319 |
+
all_cam_pos = []
|
320 |
+
if is_training:
|
321 |
+
next_frame_images = image[:,1:]
|
322 |
+
image = image[:,:1]
|
323 |
+
for cam_id, cam_name in enumerate(self.camera_names):
|
324 |
+
# features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
325 |
+
# features = features[0] # take the last layer feature
|
326 |
+
# pos = pos[0]
|
327 |
+
# all_cam_features.append(self.input_proj(features))
|
328 |
+
# all_cam_pos.append(pos)
|
329 |
+
|
330 |
+
obs_embedings, patch_embedings, pos_mae = self.model_mae(image[:,cam_id])
|
331 |
+
|
332 |
+
# proprioception features
|
333 |
+
proprio_input = self.input_proj_robot_state(qpos)
|
334 |
+
# fold camera dimension into width dimension
|
335 |
+
# src = torch.cat(all_cam_features, axis=3)
|
336 |
+
# pos = torch.cat(all_cam_pos, axis=3)
|
337 |
+
query_embed = torch.cat([self.query_embed.weight, self.patch_embed.weight], axis=0)
|
338 |
+
hs = self.transformer(patch_embedings, None, query_embed, pos_mae[0,1:], latent_input, proprio_input, self.additional_pos_embed.weight)[0]
|
339 |
+
# hs = self.transformer(src, None, self.query_embed.weight, pos, latent_input, proprio_input, self.additional_pos_embed.weight)[0]
|
340 |
+
else:
|
341 |
+
qpos = self.input_proj_robot_state(qpos)
|
342 |
+
env_state = self.input_proj_env_state(env_state)
|
343 |
+
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
344 |
+
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
|
345 |
+
a_hat = self.action_head(hs[:,:self.num_queries])
|
346 |
+
is_pad_hat = self.is_pad_head(hs[:,:self.num_queries])
|
347 |
+
|
348 |
+
# next frame prediction
|
349 |
+
mask_token = self.mask_token
|
350 |
+
mask_tokens = mask_token.repeat(bs, self.n_patch, 1)
|
351 |
+
mask_tokens = mask_tokens + self.decoder_pos_embed.repeat(bs, 1, 1)
|
352 |
+
|
353 |
+
obs_pred = self.decoder_embed(hs[:,self.num_queries:])
|
354 |
+
obs_pred_ = torch.cat([obs_pred, mask_tokens], dim=1)
|
355 |
+
for blk in self.decoder_blocks:
|
356 |
+
obs_pred_ = blk(obs_pred_)
|
357 |
+
obs_pred_ = self.decoder_norm(obs_pred_)
|
358 |
+
obs_preds = self.decoder_pred(obs_pred_)
|
359 |
+
obs_preds = obs_preds[:,self.n_patch:]
|
360 |
+
|
361 |
+
if is_training:
|
362 |
+
# next_frame_images = image[:,1:]
|
363 |
+
# next_frame_images = nn.functional.interpolate(next_frame_images[:,0], size=(self.img_h, self.img_w))
|
364 |
+
next_frame_images = next_frame_images[:,0]
|
365 |
+
p = self.patch_size
|
366 |
+
h_p = self.img_h // p
|
367 |
+
w_p = self.img_w // p
|
368 |
+
obs_targets = next_frame_images.reshape(shape=(bs, 3, h_p, p, w_p, p))
|
369 |
+
obs_targets = obs_targets.permute(0,2,4,3,5,1)
|
370 |
+
obs_targets = obs_targets.reshape(shape=(bs, h_p*w_p, (p**2)*3))
|
371 |
+
else:
|
372 |
+
obs_targets = torch.zeros_like(obs_preds)
|
373 |
+
|
374 |
+
|
375 |
+
return a_hat, is_pad_hat, [mu, logvar], [obs_preds, obs_targets]
|
376 |
+
|
377 |
+
|
378 |
+
class CNNMLP(nn.Module):
|
379 |
+
def __init__(self, backbones, state_dim, camera_names):
|
380 |
+
""" Initializes the model.
|
381 |
+
Parameters:
|
382 |
+
backbones: torch module of the backbone to be used. See backbone.py
|
383 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
384 |
+
state_dim: robot state dimension of the environment
|
385 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
386 |
+
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
387 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
388 |
+
"""
|
389 |
+
super().__init__()
|
390 |
+
self.camera_names = camera_names
|
391 |
+
self.action_head = nn.Linear(1000, state_dim) # TODO add more
|
392 |
+
if backbones is not None:
|
393 |
+
self.backbones = nn.ModuleList(backbones)
|
394 |
+
backbone_down_projs = []
|
395 |
+
for backbone in backbones:
|
396 |
+
down_proj = nn.Sequential(
|
397 |
+
nn.Conv2d(backbone.num_channels, 128, kernel_size=5),
|
398 |
+
nn.Conv2d(128, 64, kernel_size=5),
|
399 |
+
nn.Conv2d(64, 32, kernel_size=5)
|
400 |
+
)
|
401 |
+
backbone_down_projs.append(down_proj)
|
402 |
+
self.backbone_down_projs = nn.ModuleList(backbone_down_projs)
|
403 |
+
|
404 |
+
mlp_in_dim = 768 * len(backbones) + 14
|
405 |
+
self.mlp = mlp(input_dim=mlp_in_dim, hidden_dim=1024, output_dim=14, hidden_depth=2)
|
406 |
+
else:
|
407 |
+
raise NotImplementedError
|
408 |
+
|
409 |
+
def forward(self, qpos, image, env_state, actions=None):
|
410 |
+
"""
|
411 |
+
qpos: batch, qpos_dim
|
412 |
+
image: batch, num_cam, channel, height, width
|
413 |
+
env_state: None
|
414 |
+
actions: batch, seq, action_dim
|
415 |
+
"""
|
416 |
+
is_training = actions is not None # train or val
|
417 |
+
bs, _ = qpos.shape
|
418 |
+
# Image observation features and position embeddings
|
419 |
+
all_cam_features = []
|
420 |
+
for cam_id, cam_name in enumerate(self.camera_names):
|
421 |
+
features, pos = self.backbones[cam_id](image[:, cam_id])
|
422 |
+
features = features[0] # take the last layer feature
|
423 |
+
pos = pos[0] # not used
|
424 |
+
all_cam_features.append(self.backbone_down_projs[cam_id](features))
|
425 |
+
# flatten everything
|
426 |
+
flattened_features = []
|
427 |
+
for cam_feature in all_cam_features:
|
428 |
+
flattened_features.append(cam_feature.reshape([bs, -1]))
|
429 |
+
flattened_features = torch.cat(flattened_features, axis=1) # 768 each
|
430 |
+
features = torch.cat([flattened_features, qpos], axis=1) # qpos: 14
|
431 |
+
a_hat = self.mlp(features)
|
432 |
+
return a_hat
|
433 |
+
|
434 |
+
|
435 |
+
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
|
436 |
+
if hidden_depth == 0:
|
437 |
+
mods = [nn.Linear(input_dim, output_dim)]
|
438 |
+
else:
|
439 |
+
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
|
440 |
+
for i in range(hidden_depth - 1):
|
441 |
+
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
|
442 |
+
mods.append(nn.Linear(hidden_dim, output_dim))
|
443 |
+
trunk = nn.Sequential(*mods)
|
444 |
+
return trunk
|
445 |
+
|
446 |
+
|
447 |
+
def build_encoder(args):
|
448 |
+
d_model = args.hidden_dim # 256
|
449 |
+
dropout = args.dropout # 0.1
|
450 |
+
nhead = args.nheads # 8
|
451 |
+
dim_feedforward = args.dim_feedforward # 2048
|
452 |
+
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder
|
453 |
+
normalize_before = args.pre_norm # False
|
454 |
+
activation = "relu"
|
455 |
+
|
456 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
|
457 |
+
dropout, activation, normalize_before)
|
458 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
459 |
+
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
460 |
+
|
461 |
+
return encoder
|
462 |
+
|
463 |
+
|
464 |
+
def build(args):
|
465 |
+
state_dim = 14 # TODO hardcode
|
466 |
+
|
467 |
+
# From state
|
468 |
+
# backbone = None # from state for now, no need for conv nets
|
469 |
+
# From image
|
470 |
+
backbones = []
|
471 |
+
backbone = build_backbone(args)
|
472 |
+
backbones.append(backbone)
|
473 |
+
|
474 |
+
transformer = build_transformer(args)
|
475 |
+
|
476 |
+
encoder = build_encoder(args)
|
477 |
+
|
478 |
+
if not args.mae:
|
479 |
+
model = DETRVAE(
|
480 |
+
backbones,
|
481 |
+
transformer,
|
482 |
+
encoder,
|
483 |
+
state_dim=state_dim,
|
484 |
+
num_queries=args.num_queries,
|
485 |
+
camera_names=args.camera_names,
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
model = DETRVAE_MAE(
|
489 |
+
backbones,
|
490 |
+
transformer,
|
491 |
+
encoder,
|
492 |
+
state_dim=state_dim,
|
493 |
+
num_queries=args.num_queries,
|
494 |
+
camera_names=args.camera_names,
|
495 |
+
)
|
496 |
+
|
497 |
+
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
498 |
+
print("number of parameters: %.2fM" % (n_parameters/1e6,))
|
499 |
+
|
500 |
+
return model
|
501 |
+
|
502 |
+
def build_cnnmlp(args):
|
503 |
+
state_dim = 14 # TODO hardcode
|
504 |
+
|
505 |
+
# From state
|
506 |
+
# backbone = None # from state for now, no need for conv nets
|
507 |
+
# From image
|
508 |
+
backbones = []
|
509 |
+
for _ in args.camera_names:
|
510 |
+
backbone = build_backbone(args)
|
511 |
+
backbones.append(backbone)
|
512 |
+
|
513 |
+
model = CNNMLP(
|
514 |
+
backbones,
|
515 |
+
state_dim=state_dim,
|
516 |
+
camera_names=args.camera_names,
|
517 |
+
)
|
518 |
+
|
519 |
+
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
520 |
+
print("number of parameters: %.2fM" % (n_parameters/1e6,))
|
521 |
+
|
522 |
+
return model
|
523 |
+
|
ACT_DP_multitask/detr/models/mask_former/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from . import data # register all new datasets
|
3 |
+
from . import modeling
|
4 |
+
|
5 |
+
# config
|
6 |
+
from .config import add_mask_former_config
|
7 |
+
|
8 |
+
# dataset loading
|
9 |
+
from .data.dataset_mappers.detr_panoptic_dataset_mapper import DETRPanopticDatasetMapper
|
10 |
+
from .data.dataset_mappers.mask_former_panoptic_dataset_mapper import (
|
11 |
+
MaskFormerPanopticDatasetMapper,
|
12 |
+
)
|
13 |
+
from .data.dataset_mappers.mask_former_semantic_dataset_mapper import (
|
14 |
+
MaskFormerSemanticDatasetMapper,
|
15 |
+
)
|
16 |
+
|
17 |
+
# models
|
18 |
+
from .mask_former_model import MaskFormer
|
19 |
+
from .test_time_augmentation import SemanticSegmentorWithTTA
|
ACT_DP_multitask/detr/models/mask_former/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (725 Bytes). View file
|
|
ACT_DP_multitask/detr/models/mask_former/config.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
from detectron2.config import CfgNode as CN
|
4 |
+
|
5 |
+
|
6 |
+
def add_mask_former_config(cfg):
|
7 |
+
"""
|
8 |
+
Add config for MASK_FORMER.
|
9 |
+
"""
|
10 |
+
# data config
|
11 |
+
# select the dataset mapper
|
12 |
+
cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic"
|
13 |
+
# Color augmentation
|
14 |
+
cfg.INPUT.COLOR_AUG_SSD = False
|
15 |
+
# We retry random cropping until no single category in semantic segmentation GT occupies more
|
16 |
+
# than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
|
17 |
+
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
|
18 |
+
# Pad image and segmentation GT in dataset mapper.
|
19 |
+
cfg.INPUT.SIZE_DIVISIBILITY = -1
|
20 |
+
|
21 |
+
# solver config
|
22 |
+
# weight decay on embedding
|
23 |
+
cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
|
24 |
+
# optimizer
|
25 |
+
cfg.SOLVER.OPTIMIZER = "ADAMW"
|
26 |
+
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
|
27 |
+
|
28 |
+
# mask_former model config
|
29 |
+
cfg.MODEL.MASK_FORMER = CN()
|
30 |
+
|
31 |
+
# loss
|
32 |
+
cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
|
33 |
+
cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1
|
34 |
+
cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0
|
35 |
+
cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0
|
36 |
+
|
37 |
+
# transformer config
|
38 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
39 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.1
|
40 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
41 |
+
cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0
|
42 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6
|
43 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
44 |
+
|
45 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
46 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100
|
47 |
+
|
48 |
+
cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5"
|
49 |
+
cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False
|
50 |
+
|
51 |
+
# mask_former inference config
|
52 |
+
cfg.MODEL.MASK_FORMER.TEST = CN()
|
53 |
+
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False
|
54 |
+
cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0
|
55 |
+
cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0
|
56 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
|
57 |
+
|
58 |
+
# Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
|
59 |
+
# you can use this config to override
|
60 |
+
cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32
|
61 |
+
|
62 |
+
# pixel decoder config
|
63 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
64 |
+
# adding transformer in pixel decoder
|
65 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
|
66 |
+
# pixel decoder
|
67 |
+
cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"
|
68 |
+
|
69 |
+
# swin transformer backbone
|
70 |
+
cfg.MODEL.SWIN = CN()
|
71 |
+
cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
|
72 |
+
cfg.MODEL.SWIN.PATCH_SIZE = 4
|
73 |
+
cfg.MODEL.SWIN.EMBED_DIM = 96
|
74 |
+
cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
|
75 |
+
cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
|
76 |
+
cfg.MODEL.SWIN.WINDOW_SIZE = 7
|
77 |
+
cfg.MODEL.SWIN.MLP_RATIO = 4.0
|
78 |
+
cfg.MODEL.SWIN.QKV_BIAS = True
|
79 |
+
cfg.MODEL.SWIN.QK_SCALE = None
|
80 |
+
cfg.MODEL.SWIN.DROP_RATE = 0.0
|
81 |
+
cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
|
82 |
+
cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
|
83 |
+
cfg.MODEL.SWIN.APE = False
|
84 |
+
cfg.MODEL.SWIN.PATCH_NORM = True
|
85 |
+
cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
|
ACT_DP_multitask/detr/models/mask_former/mask_former_model.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from detectron2.config import configurable
|
9 |
+
from detectron2.data import MetadataCatalog
|
10 |
+
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
|
11 |
+
from detectron2.modeling.backbone import Backbone
|
12 |
+
from detectron2.modeling.postprocessing import sem_seg_postprocess
|
13 |
+
from detectron2.structures import ImageList
|
14 |
+
|
15 |
+
from .modeling.criterion import SetCriterion
|
16 |
+
from .modeling.matcher import HungarianMatcher
|
17 |
+
|
18 |
+
|
19 |
+
@META_ARCH_REGISTRY.register()
|
20 |
+
class MaskFormer(nn.Module):
|
21 |
+
"""
|
22 |
+
Main class for mask classification semantic segmentation architectures.
|
23 |
+
"""
|
24 |
+
|
25 |
+
@configurable
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
*,
|
29 |
+
backbone: Backbone,
|
30 |
+
sem_seg_head: nn.Module,
|
31 |
+
criterion: nn.Module,
|
32 |
+
num_queries: int,
|
33 |
+
panoptic_on: bool,
|
34 |
+
object_mask_threshold: float,
|
35 |
+
overlap_threshold: float,
|
36 |
+
metadata,
|
37 |
+
size_divisibility: int,
|
38 |
+
sem_seg_postprocess_before_inference: bool,
|
39 |
+
pixel_mean: Tuple[float],
|
40 |
+
pixel_std: Tuple[float],
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
backbone: a backbone module, must follow detectron2's backbone interface
|
45 |
+
sem_seg_head: a module that predicts semantic segmentation from backbone features
|
46 |
+
criterion: a module that defines the loss
|
47 |
+
num_queries: int, number of queries
|
48 |
+
panoptic_on: bool, whether to output panoptic segmentation prediction
|
49 |
+
object_mask_threshold: float, threshold to filter query based on classification score
|
50 |
+
for panoptic segmentation inference
|
51 |
+
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
|
52 |
+
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
|
53 |
+
segmentation inference
|
54 |
+
size_divisibility: Some backbones require the input height and width to be divisible by a
|
55 |
+
specific integer. We can use this to override such requirement.
|
56 |
+
sem_seg_postprocess_before_inference: whether to resize the prediction back
|
57 |
+
to original input size before semantic segmentation inference or after.
|
58 |
+
For high-resolution dataset like Mapillary, resizing predictions before
|
59 |
+
inference will cause OOM error.
|
60 |
+
pixel_mean, pixel_std: list or tuple with #channels element, representing
|
61 |
+
the per-channel mean and std to be used to normalize the input image
|
62 |
+
"""
|
63 |
+
super().__init__()
|
64 |
+
self.backbone = backbone
|
65 |
+
self.sem_seg_head = sem_seg_head
|
66 |
+
self.criterion = criterion
|
67 |
+
self.num_queries = num_queries
|
68 |
+
self.overlap_threshold = overlap_threshold
|
69 |
+
self.panoptic_on = panoptic_on
|
70 |
+
self.object_mask_threshold = object_mask_threshold
|
71 |
+
self.metadata = metadata
|
72 |
+
if size_divisibility < 0:
|
73 |
+
# use backbone size_divisibility if not set
|
74 |
+
size_divisibility = self.backbone.size_divisibility
|
75 |
+
self.size_divisibility = size_divisibility
|
76 |
+
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
|
77 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
78 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
79 |
+
|
80 |
+
@classmethod
|
81 |
+
def from_config(cls, cfg):
|
82 |
+
backbone = build_backbone(cfg)
|
83 |
+
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
|
84 |
+
|
85 |
+
# Loss parameters:
|
86 |
+
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
87 |
+
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
|
88 |
+
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
|
89 |
+
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
|
90 |
+
|
91 |
+
# building criterion
|
92 |
+
matcher = HungarianMatcher(
|
93 |
+
cost_class=1,
|
94 |
+
cost_mask=mask_weight,
|
95 |
+
cost_dice=dice_weight,
|
96 |
+
)
|
97 |
+
|
98 |
+
weight_dict = {"loss_ce": 1, "loss_mask": mask_weight, "loss_dice": dice_weight}
|
99 |
+
if deep_supervision:
|
100 |
+
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
101 |
+
aux_weight_dict = {}
|
102 |
+
for i in range(dec_layers - 1):
|
103 |
+
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
104 |
+
weight_dict.update(aux_weight_dict)
|
105 |
+
|
106 |
+
losses = ["labels", "masks"]
|
107 |
+
|
108 |
+
criterion = SetCriterion(
|
109 |
+
sem_seg_head.num_classes,
|
110 |
+
matcher=matcher,
|
111 |
+
weight_dict=weight_dict,
|
112 |
+
eos_coef=no_object_weight,
|
113 |
+
losses=losses,
|
114 |
+
)
|
115 |
+
|
116 |
+
return {
|
117 |
+
"backbone": backbone,
|
118 |
+
"sem_seg_head": sem_seg_head,
|
119 |
+
"criterion": criterion,
|
120 |
+
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
|
121 |
+
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
|
122 |
+
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
|
123 |
+
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
|
124 |
+
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
|
125 |
+
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
|
126 |
+
"sem_seg_postprocess_before_inference": (
|
127 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
|
128 |
+
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
|
129 |
+
),
|
130 |
+
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
|
131 |
+
"pixel_std": cfg.MODEL.PIXEL_STD,
|
132 |
+
}
|
133 |
+
|
134 |
+
@property
|
135 |
+
def device(self):
|
136 |
+
return self.pixel_mean.device
|
137 |
+
|
138 |
+
def forward(self, batched_inputs):
|
139 |
+
"""
|
140 |
+
Args:
|
141 |
+
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
|
142 |
+
Each item in the list contains the inputs for one image.
|
143 |
+
For now, each item in the list is a dict that contains:
|
144 |
+
* "image": Tensor, image in (C, H, W) format.
|
145 |
+
* "instances": per-region ground truth
|
146 |
+
* Other information that's included in the original dicts, such as:
|
147 |
+
"height", "width" (int): the output resolution of the model (may be different
|
148 |
+
from input resolution), used in inference.
|
149 |
+
Returns:
|
150 |
+
list[dict]:
|
151 |
+
each dict has the results for one image. The dict contains the following keys:
|
152 |
+
|
153 |
+
* "sem_seg":
|
154 |
+
A Tensor that represents the
|
155 |
+
per-pixel segmentation prediced by the head.
|
156 |
+
The prediction has shape KxHxW that represents the logits of
|
157 |
+
each class for each pixel.
|
158 |
+
* "panoptic_seg":
|
159 |
+
A tuple that represent panoptic output
|
160 |
+
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
|
161 |
+
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
|
162 |
+
Each dict contains keys "id", "category_id", "isthing".
|
163 |
+
"""
|
164 |
+
images = [x["image"].to(self.device) for x in batched_inputs]
|
165 |
+
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
|
166 |
+
images = ImageList.from_tensors(images, self.size_divisibility)
|
167 |
+
|
168 |
+
features = self.backbone(images.tensor)
|
169 |
+
outputs = self.sem_seg_head(features)
|
170 |
+
|
171 |
+
if self.training:
|
172 |
+
# mask classification target
|
173 |
+
if "instances" in batched_inputs[0]:
|
174 |
+
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
|
175 |
+
targets = self.prepare_targets(gt_instances, images)
|
176 |
+
else:
|
177 |
+
targets = None
|
178 |
+
|
179 |
+
# bipartite matching-based loss
|
180 |
+
losses = self.criterion(outputs, targets)
|
181 |
+
|
182 |
+
for k in list(losses.keys()):
|
183 |
+
if k in self.criterion.weight_dict:
|
184 |
+
losses[k] *= self.criterion.weight_dict[k]
|
185 |
+
else:
|
186 |
+
# remove this loss if not specified in `weight_dict`
|
187 |
+
losses.pop(k)
|
188 |
+
|
189 |
+
return losses
|
190 |
+
else:
|
191 |
+
mask_cls_results = outputs["pred_logits"]
|
192 |
+
mask_pred_results = outputs["pred_masks"]
|
193 |
+
# upsample masks
|
194 |
+
mask_pred_results = F.interpolate(
|
195 |
+
mask_pred_results,
|
196 |
+
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
|
197 |
+
mode="bilinear",
|
198 |
+
align_corners=False,
|
199 |
+
)
|
200 |
+
|
201 |
+
processed_results = []
|
202 |
+
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
|
203 |
+
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
|
204 |
+
):
|
205 |
+
height = input_per_image.get("height", image_size[0])
|
206 |
+
width = input_per_image.get("width", image_size[1])
|
207 |
+
|
208 |
+
if self.sem_seg_postprocess_before_inference:
|
209 |
+
mask_pred_result = sem_seg_postprocess(
|
210 |
+
mask_pred_result, image_size, height, width
|
211 |
+
)
|
212 |
+
|
213 |
+
# semantic segmentation inference
|
214 |
+
r = self.semantic_inference(mask_cls_result, mask_pred_result)
|
215 |
+
if not self.sem_seg_postprocess_before_inference:
|
216 |
+
r = sem_seg_postprocess(r, image_size, height, width)
|
217 |
+
processed_results.append({"sem_seg": r})
|
218 |
+
|
219 |
+
# panoptic segmentation inference
|
220 |
+
if self.panoptic_on:
|
221 |
+
panoptic_r = self.panoptic_inference(mask_cls_result, mask_pred_result)
|
222 |
+
processed_results[-1]["panoptic_seg"] = panoptic_r
|
223 |
+
|
224 |
+
return processed_results
|
225 |
+
|
226 |
+
def prepare_targets(self, targets, images):
|
227 |
+
h, w = images.tensor.shape[-2:]
|
228 |
+
new_targets = []
|
229 |
+
for targets_per_image in targets:
|
230 |
+
# pad gt
|
231 |
+
gt_masks = targets_per_image.gt_masks
|
232 |
+
padded_masks = torch.zeros((gt_masks.shape[0], h, w), dtype=gt_masks.dtype, device=gt_masks.device)
|
233 |
+
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
|
234 |
+
new_targets.append(
|
235 |
+
{
|
236 |
+
"labels": targets_per_image.gt_classes,
|
237 |
+
"masks": padded_masks,
|
238 |
+
}
|
239 |
+
)
|
240 |
+
return new_targets
|
241 |
+
|
242 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
243 |
+
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
|
244 |
+
mask_pred = mask_pred.sigmoid()
|
245 |
+
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
|
246 |
+
return semseg
|
247 |
+
|
248 |
+
def panoptic_inference(self, mask_cls, mask_pred):
|
249 |
+
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
|
250 |
+
mask_pred = mask_pred.sigmoid()
|
251 |
+
|
252 |
+
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
|
253 |
+
cur_scores = scores[keep]
|
254 |
+
cur_classes = labels[keep]
|
255 |
+
cur_masks = mask_pred[keep]
|
256 |
+
cur_mask_cls = mask_cls[keep]
|
257 |
+
cur_mask_cls = cur_mask_cls[:, :-1]
|
258 |
+
|
259 |
+
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
|
260 |
+
|
261 |
+
h, w = cur_masks.shape[-2:]
|
262 |
+
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
|
263 |
+
segments_info = []
|
264 |
+
|
265 |
+
current_segment_id = 0
|
266 |
+
|
267 |
+
if cur_masks.shape[0] == 0:
|
268 |
+
# We didn't detect any mask :(
|
269 |
+
return panoptic_seg, segments_info
|
270 |
+
else:
|
271 |
+
# take argmax
|
272 |
+
cur_mask_ids = cur_prob_masks.argmax(0)
|
273 |
+
stuff_memory_list = {}
|
274 |
+
for k in range(cur_classes.shape[0]):
|
275 |
+
pred_class = cur_classes[k].item()
|
276 |
+
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
277 |
+
mask = cur_mask_ids == k
|
278 |
+
mask_area = mask.sum().item()
|
279 |
+
original_area = (cur_masks[k] >= 0.5).sum().item()
|
280 |
+
|
281 |
+
if mask_area > 0 and original_area > 0:
|
282 |
+
if mask_area / original_area < self.overlap_threshold:
|
283 |
+
continue
|
284 |
+
|
285 |
+
# merge stuff regions
|
286 |
+
if not isthing:
|
287 |
+
if int(pred_class) in stuff_memory_list.keys():
|
288 |
+
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
|
289 |
+
continue
|
290 |
+
else:
|
291 |
+
stuff_memory_list[int(pred_class)] = current_segment_id + 1
|
292 |
+
|
293 |
+
current_segment_id += 1
|
294 |
+
panoptic_seg[mask] = current_segment_id
|
295 |
+
|
296 |
+
segments_info.append(
|
297 |
+
{
|
298 |
+
"id": current_segment_id,
|
299 |
+
"isthing": bool(isthing),
|
300 |
+
"category_id": int(pred_class),
|
301 |
+
}
|
302 |
+
)
|
303 |
+
|
304 |
+
return panoptic_seg, segments_info
|
ACT_DP_multitask/detr/models/mask_former/modeling/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .backbone.swin import D2SwinTransformer
|
3 |
+
from .heads.mask_former_head import MaskFormerHead
|
4 |
+
from .heads.per_pixel_baseline import PerPixelBaselineHead, PerPixelBaselinePlusHead
|
5 |
+
from .heads.pixel_decoder import BasePixelDecoder
|
ACT_DP_multitask/detr/models/mask_former/modeling/backbone/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
ACT_DP_multitask/detr/models/mask_former/modeling/backbone/swin.py
ADDED
@@ -0,0 +1,768 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
9 |
+
# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint as checkpoint
|
16 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
17 |
+
|
18 |
+
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
|
19 |
+
|
20 |
+
|
21 |
+
class Mlp(nn.Module):
|
22 |
+
"""Multilayer perceptron."""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
def window_partition(x, window_size):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x: (B, H, W, C)
|
48 |
+
window_size (int): window size
|
49 |
+
Returns:
|
50 |
+
windows: (num_windows*B, window_size, window_size, C)
|
51 |
+
"""
|
52 |
+
B, H, W, C = x.shape
|
53 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
54 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
55 |
+
return windows
|
56 |
+
|
57 |
+
|
58 |
+
def window_reverse(windows, window_size, H, W):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
windows: (num_windows*B, window_size, window_size, C)
|
62 |
+
window_size (int): Window size
|
63 |
+
H (int): Height of image
|
64 |
+
W (int): Width of image
|
65 |
+
Returns:
|
66 |
+
x: (B, H, W, C)
|
67 |
+
"""
|
68 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
69 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
70 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class WindowAttention(nn.Module):
|
75 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
76 |
+
It supports both of shifted and non-shifted window.
|
77 |
+
Args:
|
78 |
+
dim (int): Number of input channels.
|
79 |
+
window_size (tuple[int]): The height and width of the window.
|
80 |
+
num_heads (int): Number of attention heads.
|
81 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
82 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
83 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
84 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
dim,
|
90 |
+
window_size,
|
91 |
+
num_heads,
|
92 |
+
qkv_bias=True,
|
93 |
+
qk_scale=None,
|
94 |
+
attn_drop=0.0,
|
95 |
+
proj_drop=0.0,
|
96 |
+
):
|
97 |
+
|
98 |
+
super().__init__()
|
99 |
+
self.dim = dim
|
100 |
+
self.window_size = window_size # Wh, Ww
|
101 |
+
self.num_heads = num_heads
|
102 |
+
head_dim = dim // num_heads
|
103 |
+
self.scale = qk_scale or head_dim ** -0.5
|
104 |
+
|
105 |
+
# define a parameter table of relative position bias
|
106 |
+
self.relative_position_bias_table = nn.Parameter(
|
107 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
108 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
124 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
125 |
+
self.proj = nn.Linear(dim, dim)
|
126 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
127 |
+
|
128 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
129 |
+
self.softmax = nn.Softmax(dim=-1)
|
130 |
+
|
131 |
+
def forward(self, x, mask=None):
|
132 |
+
"""Forward function.
|
133 |
+
Args:
|
134 |
+
x: input features with shape of (num_windows*B, N, C)
|
135 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
136 |
+
"""
|
137 |
+
B_, N, C = x.shape
|
138 |
+
qkv = (
|
139 |
+
self.qkv(x)
|
140 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
141 |
+
.permute(2, 0, 3, 1, 4)
|
142 |
+
)
|
143 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
144 |
+
|
145 |
+
q = q * self.scale
|
146 |
+
attn = q @ k.transpose(-2, -1)
|
147 |
+
|
148 |
+
relative_position_bias = self.relative_position_bias_table[
|
149 |
+
self.relative_position_index.view(-1)
|
150 |
+
].view(
|
151 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
152 |
+
) # Wh*Ww,Wh*Ww,nH
|
153 |
+
relative_position_bias = relative_position_bias.permute(
|
154 |
+
2, 0, 1
|
155 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
156 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
157 |
+
|
158 |
+
if mask is not None:
|
159 |
+
nW = mask.shape[0]
|
160 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
161 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
162 |
+
attn = self.softmax(attn)
|
163 |
+
else:
|
164 |
+
attn = self.softmax(attn)
|
165 |
+
|
166 |
+
attn = self.attn_drop(attn)
|
167 |
+
|
168 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
169 |
+
x = self.proj(x)
|
170 |
+
x = self.proj_drop(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
class SwinTransformerBlock(nn.Module):
|
175 |
+
"""Swin Transformer Block.
|
176 |
+
Args:
|
177 |
+
dim (int): Number of input channels.
|
178 |
+
num_heads (int): Number of attention heads.
|
179 |
+
window_size (int): Window size.
|
180 |
+
shift_size (int): Shift size for SW-MSA.
|
181 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
182 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
183 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
184 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
185 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
186 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
187 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
188 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
dim,
|
194 |
+
num_heads,
|
195 |
+
window_size=7,
|
196 |
+
shift_size=0,
|
197 |
+
mlp_ratio=4.0,
|
198 |
+
qkv_bias=True,
|
199 |
+
qk_scale=None,
|
200 |
+
drop=0.0,
|
201 |
+
attn_drop=0.0,
|
202 |
+
drop_path=0.0,
|
203 |
+
act_layer=nn.GELU,
|
204 |
+
norm_layer=nn.LayerNorm,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
self.dim = dim
|
208 |
+
self.num_heads = num_heads
|
209 |
+
self.window_size = window_size
|
210 |
+
self.shift_size = shift_size
|
211 |
+
self.mlp_ratio = mlp_ratio
|
212 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
213 |
+
|
214 |
+
self.norm1 = norm_layer(dim)
|
215 |
+
self.attn = WindowAttention(
|
216 |
+
dim,
|
217 |
+
window_size=to_2tuple(self.window_size),
|
218 |
+
num_heads=num_heads,
|
219 |
+
qkv_bias=qkv_bias,
|
220 |
+
qk_scale=qk_scale,
|
221 |
+
attn_drop=attn_drop,
|
222 |
+
proj_drop=drop,
|
223 |
+
)
|
224 |
+
|
225 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
226 |
+
self.norm2 = norm_layer(dim)
|
227 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
228 |
+
self.mlp = Mlp(
|
229 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
230 |
+
)
|
231 |
+
|
232 |
+
self.H = None
|
233 |
+
self.W = None
|
234 |
+
|
235 |
+
def forward(self, x, mask_matrix):
|
236 |
+
"""Forward function.
|
237 |
+
Args:
|
238 |
+
x: Input feature, tensor size (B, H*W, C).
|
239 |
+
H, W: Spatial resolution of the input feature.
|
240 |
+
mask_matrix: Attention mask for cyclic shift.
|
241 |
+
"""
|
242 |
+
B, L, C = x.shape
|
243 |
+
H, W = self.H, self.W
|
244 |
+
assert L == H * W, "input feature has wrong size"
|
245 |
+
|
246 |
+
shortcut = x
|
247 |
+
x = self.norm1(x)
|
248 |
+
x = x.view(B, H, W, C)
|
249 |
+
|
250 |
+
# pad feature maps to multiples of window size
|
251 |
+
pad_l = pad_t = 0
|
252 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
253 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
254 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
255 |
+
_, Hp, Wp, _ = x.shape
|
256 |
+
|
257 |
+
# cyclic shift
|
258 |
+
if self.shift_size > 0:
|
259 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
260 |
+
attn_mask = mask_matrix
|
261 |
+
else:
|
262 |
+
shifted_x = x
|
263 |
+
attn_mask = None
|
264 |
+
|
265 |
+
# partition windows
|
266 |
+
x_windows = window_partition(
|
267 |
+
shifted_x, self.window_size
|
268 |
+
) # nW*B, window_size, window_size, C
|
269 |
+
x_windows = x_windows.view(
|
270 |
+
-1, self.window_size * self.window_size, C
|
271 |
+
) # nW*B, window_size*window_size, C
|
272 |
+
|
273 |
+
# W-MSA/SW-MSA
|
274 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
275 |
+
|
276 |
+
# merge windows
|
277 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
278 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
279 |
+
|
280 |
+
# reverse cyclic shift
|
281 |
+
if self.shift_size > 0:
|
282 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
283 |
+
else:
|
284 |
+
x = shifted_x
|
285 |
+
|
286 |
+
if pad_r > 0 or pad_b > 0:
|
287 |
+
x = x[:, :H, :W, :].contiguous()
|
288 |
+
|
289 |
+
x = x.view(B, H * W, C)
|
290 |
+
|
291 |
+
# FFN
|
292 |
+
x = shortcut + self.drop_path(x)
|
293 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
294 |
+
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class PatchMerging(nn.Module):
|
299 |
+
"""Patch Merging Layer
|
300 |
+
Args:
|
301 |
+
dim (int): Number of input channels.
|
302 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
306 |
+
super().__init__()
|
307 |
+
self.dim = dim
|
308 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
309 |
+
self.norm = norm_layer(4 * dim)
|
310 |
+
|
311 |
+
def forward(self, x, H, W):
|
312 |
+
"""Forward function.
|
313 |
+
Args:
|
314 |
+
x: Input feature, tensor size (B, H*W, C).
|
315 |
+
H, W: Spatial resolution of the input feature.
|
316 |
+
"""
|
317 |
+
B, L, C = x.shape
|
318 |
+
assert L == H * W, "input feature has wrong size"
|
319 |
+
|
320 |
+
x = x.view(B, H, W, C)
|
321 |
+
|
322 |
+
# padding
|
323 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
324 |
+
if pad_input:
|
325 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
326 |
+
|
327 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
328 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
329 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
330 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
331 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
332 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
333 |
+
|
334 |
+
x = self.norm(x)
|
335 |
+
x = self.reduction(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
|
340 |
+
class BasicLayer(nn.Module):
|
341 |
+
"""A basic Swin Transformer layer for one stage.
|
342 |
+
Args:
|
343 |
+
dim (int): Number of feature channels
|
344 |
+
depth (int): Depths of this stage.
|
345 |
+
num_heads (int): Number of attention head.
|
346 |
+
window_size (int): Local window size. Default: 7.
|
347 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
348 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
349 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
350 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
351 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
352 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
353 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
354 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
355 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
356 |
+
"""
|
357 |
+
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
dim,
|
361 |
+
depth,
|
362 |
+
num_heads,
|
363 |
+
window_size=7,
|
364 |
+
mlp_ratio=4.0,
|
365 |
+
qkv_bias=True,
|
366 |
+
qk_scale=None,
|
367 |
+
drop=0.0,
|
368 |
+
attn_drop=0.0,
|
369 |
+
drop_path=0.0,
|
370 |
+
norm_layer=nn.LayerNorm,
|
371 |
+
downsample=None,
|
372 |
+
use_checkpoint=False,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
self.window_size = window_size
|
376 |
+
self.shift_size = window_size // 2
|
377 |
+
self.depth = depth
|
378 |
+
self.use_checkpoint = use_checkpoint
|
379 |
+
|
380 |
+
# build blocks
|
381 |
+
self.blocks = nn.ModuleList(
|
382 |
+
[
|
383 |
+
SwinTransformerBlock(
|
384 |
+
dim=dim,
|
385 |
+
num_heads=num_heads,
|
386 |
+
window_size=window_size,
|
387 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
388 |
+
mlp_ratio=mlp_ratio,
|
389 |
+
qkv_bias=qkv_bias,
|
390 |
+
qk_scale=qk_scale,
|
391 |
+
drop=drop,
|
392 |
+
attn_drop=attn_drop,
|
393 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
394 |
+
norm_layer=norm_layer,
|
395 |
+
)
|
396 |
+
for i in range(depth)
|
397 |
+
]
|
398 |
+
)
|
399 |
+
|
400 |
+
# patch merging layer
|
401 |
+
if downsample is not None:
|
402 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
403 |
+
else:
|
404 |
+
self.downsample = None
|
405 |
+
|
406 |
+
def forward(self, x, H, W):
|
407 |
+
"""Forward function.
|
408 |
+
Args:
|
409 |
+
x: Input feature, tensor size (B, H*W, C).
|
410 |
+
H, W: Spatial resolution of the input feature.
|
411 |
+
"""
|
412 |
+
|
413 |
+
# calculate attention mask for SW-MSA
|
414 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
415 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
416 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
417 |
+
h_slices = (
|
418 |
+
slice(0, -self.window_size),
|
419 |
+
slice(-self.window_size, -self.shift_size),
|
420 |
+
slice(-self.shift_size, None),
|
421 |
+
)
|
422 |
+
w_slices = (
|
423 |
+
slice(0, -self.window_size),
|
424 |
+
slice(-self.window_size, -self.shift_size),
|
425 |
+
slice(-self.shift_size, None),
|
426 |
+
)
|
427 |
+
cnt = 0
|
428 |
+
for h in h_slices:
|
429 |
+
for w in w_slices:
|
430 |
+
img_mask[:, h, w, :] = cnt
|
431 |
+
cnt += 1
|
432 |
+
|
433 |
+
mask_windows = window_partition(
|
434 |
+
img_mask, self.window_size
|
435 |
+
) # nW, window_size, window_size, 1
|
436 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
437 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
438 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
439 |
+
attn_mask == 0, float(0.0)
|
440 |
+
)
|
441 |
+
|
442 |
+
for blk in self.blocks:
|
443 |
+
blk.H, blk.W = H, W
|
444 |
+
if self.use_checkpoint:
|
445 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
446 |
+
else:
|
447 |
+
x = blk(x, attn_mask)
|
448 |
+
if self.downsample is not None:
|
449 |
+
x_down = self.downsample(x, H, W)
|
450 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
451 |
+
return x, H, W, x_down, Wh, Ww
|
452 |
+
else:
|
453 |
+
return x, H, W, x, H, W
|
454 |
+
|
455 |
+
|
456 |
+
class PatchEmbed(nn.Module):
|
457 |
+
"""Image to Patch Embedding
|
458 |
+
Args:
|
459 |
+
patch_size (int): Patch token size. Default: 4.
|
460 |
+
in_chans (int): Number of input image channels. Default: 3.
|
461 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
462 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
466 |
+
super().__init__()
|
467 |
+
patch_size = to_2tuple(patch_size)
|
468 |
+
self.patch_size = patch_size
|
469 |
+
|
470 |
+
self.in_chans = in_chans
|
471 |
+
self.embed_dim = embed_dim
|
472 |
+
|
473 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
474 |
+
if norm_layer is not None:
|
475 |
+
self.norm = norm_layer(embed_dim)
|
476 |
+
else:
|
477 |
+
self.norm = None
|
478 |
+
|
479 |
+
def forward(self, x):
|
480 |
+
"""Forward function."""
|
481 |
+
# padding
|
482 |
+
_, _, H, W = x.size()
|
483 |
+
if W % self.patch_size[1] != 0:
|
484 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
485 |
+
if H % self.patch_size[0] != 0:
|
486 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
487 |
+
|
488 |
+
x = self.proj(x) # B C Wh Ww
|
489 |
+
if self.norm is not None:
|
490 |
+
Wh, Ww = x.size(2), x.size(3)
|
491 |
+
x = x.flatten(2).transpose(1, 2)
|
492 |
+
x = self.norm(x)
|
493 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
494 |
+
|
495 |
+
return x
|
496 |
+
|
497 |
+
|
498 |
+
class SwinTransformer(nn.Module):
|
499 |
+
"""Swin Transformer backbone.
|
500 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
501 |
+
https://arxiv.org/pdf/2103.14030
|
502 |
+
Args:
|
503 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
504 |
+
used in absolute postion embedding. Default 224.
|
505 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
506 |
+
in_chans (int): Number of input image channels. Default: 3.
|
507 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
508 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
509 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
510 |
+
window_size (int): Window size. Default: 7.
|
511 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
512 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
513 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
514 |
+
drop_rate (float): Dropout rate.
|
515 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
516 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
517 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
518 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
519 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
520 |
+
out_indices (Sequence[int]): Output from which stages.
|
521 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
522 |
+
-1 means not freezing any parameters.
|
523 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
pretrain_img_size=224,
|
529 |
+
patch_size=4,
|
530 |
+
in_chans=3,
|
531 |
+
embed_dim=96,
|
532 |
+
depths=[2, 2, 6, 2],
|
533 |
+
num_heads=[3, 6, 12, 24],
|
534 |
+
window_size=7,
|
535 |
+
mlp_ratio=4.0,
|
536 |
+
qkv_bias=True,
|
537 |
+
qk_scale=None,
|
538 |
+
drop_rate=0.0,
|
539 |
+
attn_drop_rate=0.0,
|
540 |
+
drop_path_rate=0.2,
|
541 |
+
norm_layer=nn.LayerNorm,
|
542 |
+
ape=False,
|
543 |
+
patch_norm=True,
|
544 |
+
out_indices=(0, 1, 2, 3),
|
545 |
+
frozen_stages=-1,
|
546 |
+
use_checkpoint=False,
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
|
550 |
+
self.pretrain_img_size = pretrain_img_size
|
551 |
+
self.num_layers = len(depths)
|
552 |
+
self.embed_dim = embed_dim
|
553 |
+
self.ape = ape
|
554 |
+
self.patch_norm = patch_norm
|
555 |
+
self.out_indices = out_indices
|
556 |
+
self.frozen_stages = frozen_stages
|
557 |
+
|
558 |
+
# split image into non-overlapping patches
|
559 |
+
self.patch_embed = PatchEmbed(
|
560 |
+
patch_size=patch_size,
|
561 |
+
in_chans=in_chans,
|
562 |
+
embed_dim=embed_dim,
|
563 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
564 |
+
)
|
565 |
+
|
566 |
+
# absolute position embedding
|
567 |
+
if self.ape:
|
568 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
569 |
+
patch_size = to_2tuple(patch_size)
|
570 |
+
patches_resolution = [
|
571 |
+
pretrain_img_size[0] // patch_size[0],
|
572 |
+
pretrain_img_size[1] // patch_size[1],
|
573 |
+
]
|
574 |
+
|
575 |
+
self.absolute_pos_embed = nn.Parameter(
|
576 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
577 |
+
)
|
578 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
579 |
+
|
580 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
581 |
+
|
582 |
+
# stochastic depth
|
583 |
+
dpr = [
|
584 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
585 |
+
] # stochastic depth decay rule
|
586 |
+
|
587 |
+
# build layers
|
588 |
+
self.layers = nn.ModuleList()
|
589 |
+
for i_layer in range(self.num_layers):
|
590 |
+
layer = BasicLayer(
|
591 |
+
dim=int(embed_dim * 2 ** i_layer),
|
592 |
+
depth=depths[i_layer],
|
593 |
+
num_heads=num_heads[i_layer],
|
594 |
+
window_size=window_size,
|
595 |
+
mlp_ratio=mlp_ratio,
|
596 |
+
qkv_bias=qkv_bias,
|
597 |
+
qk_scale=qk_scale,
|
598 |
+
drop=drop_rate,
|
599 |
+
attn_drop=attn_drop_rate,
|
600 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
601 |
+
norm_layer=norm_layer,
|
602 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
603 |
+
use_checkpoint=use_checkpoint,
|
604 |
+
)
|
605 |
+
self.layers.append(layer)
|
606 |
+
|
607 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
608 |
+
self.num_features = num_features
|
609 |
+
|
610 |
+
# add a norm layer for each output
|
611 |
+
for i_layer in out_indices:
|
612 |
+
layer = norm_layer(num_features[i_layer])
|
613 |
+
layer_name = f"norm{i_layer}"
|
614 |
+
self.add_module(layer_name, layer)
|
615 |
+
|
616 |
+
self._freeze_stages()
|
617 |
+
|
618 |
+
def _freeze_stages(self):
|
619 |
+
if self.frozen_stages >= 0:
|
620 |
+
self.patch_embed.eval()
|
621 |
+
for param in self.patch_embed.parameters():
|
622 |
+
param.requires_grad = False
|
623 |
+
|
624 |
+
if self.frozen_stages >= 1 and self.ape:
|
625 |
+
self.absolute_pos_embed.requires_grad = False
|
626 |
+
|
627 |
+
if self.frozen_stages >= 2:
|
628 |
+
self.pos_drop.eval()
|
629 |
+
for i in range(0, self.frozen_stages - 1):
|
630 |
+
m = self.layers[i]
|
631 |
+
m.eval()
|
632 |
+
for param in m.parameters():
|
633 |
+
param.requires_grad = False
|
634 |
+
|
635 |
+
def init_weights(self, pretrained=None):
|
636 |
+
"""Initialize the weights in backbone.
|
637 |
+
Args:
|
638 |
+
pretrained (str, optional): Path to pre-trained weights.
|
639 |
+
Defaults to None.
|
640 |
+
"""
|
641 |
+
|
642 |
+
def _init_weights(m):
|
643 |
+
if isinstance(m, nn.Linear):
|
644 |
+
trunc_normal_(m.weight, std=0.02)
|
645 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
646 |
+
nn.init.constant_(m.bias, 0)
|
647 |
+
elif isinstance(m, nn.LayerNorm):
|
648 |
+
nn.init.constant_(m.bias, 0)
|
649 |
+
nn.init.constant_(m.weight, 1.0)
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
"""Forward function."""
|
653 |
+
x = self.patch_embed(x)
|
654 |
+
|
655 |
+
Wh, Ww = x.size(2), x.size(3)
|
656 |
+
if self.ape:
|
657 |
+
# interpolate the position embedding to the corresponding size
|
658 |
+
absolute_pos_embed = F.interpolate(
|
659 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
660 |
+
)
|
661 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
662 |
+
else:
|
663 |
+
x = x.flatten(2).transpose(1, 2)
|
664 |
+
x = self.pos_drop(x)
|
665 |
+
|
666 |
+
outs = {}
|
667 |
+
for i in range(self.num_layers):
|
668 |
+
layer = self.layers[i]
|
669 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
670 |
+
|
671 |
+
if i in self.out_indices:
|
672 |
+
norm_layer = getattr(self, f"norm{i}")
|
673 |
+
x_out = norm_layer(x_out)
|
674 |
+
|
675 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
676 |
+
outs["res{}".format(i + 2)] = out
|
677 |
+
|
678 |
+
return outs
|
679 |
+
|
680 |
+
def train(self, mode=True):
|
681 |
+
"""Convert the model into training mode while keep layers freezed."""
|
682 |
+
super(SwinTransformer, self).train(mode)
|
683 |
+
self._freeze_stages()
|
684 |
+
|
685 |
+
|
686 |
+
@BACKBONE_REGISTRY.register()
|
687 |
+
class D2SwinTransformer(SwinTransformer, Backbone):
|
688 |
+
def __init__(self, cfg, input_shape):
|
689 |
+
|
690 |
+
pretrain_img_size = cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE
|
691 |
+
patch_size = cfg.MODEL.SWIN.PATCH_SIZE
|
692 |
+
in_chans = 3
|
693 |
+
embed_dim = cfg.MODEL.SWIN.EMBED_DIM
|
694 |
+
depths = cfg.MODEL.SWIN.DEPTHS
|
695 |
+
num_heads = cfg.MODEL.SWIN.NUM_HEADS
|
696 |
+
window_size = cfg.MODEL.SWIN.WINDOW_SIZE
|
697 |
+
mlp_ratio = cfg.MODEL.SWIN.MLP_RATIO
|
698 |
+
qkv_bias = cfg.MODEL.SWIN.QKV_BIAS
|
699 |
+
qk_scale = cfg.MODEL.SWIN.QK_SCALE
|
700 |
+
drop_rate = cfg.MODEL.SWIN.DROP_RATE
|
701 |
+
attn_drop_rate = cfg.MODEL.SWIN.ATTN_DROP_RATE
|
702 |
+
drop_path_rate = cfg.MODEL.SWIN.DROP_PATH_RATE
|
703 |
+
norm_layer = nn.LayerNorm
|
704 |
+
ape = cfg.MODEL.SWIN.APE
|
705 |
+
patch_norm = cfg.MODEL.SWIN.PATCH_NORM
|
706 |
+
|
707 |
+
super().__init__(
|
708 |
+
pretrain_img_size,
|
709 |
+
patch_size,
|
710 |
+
in_chans,
|
711 |
+
embed_dim,
|
712 |
+
depths,
|
713 |
+
num_heads,
|
714 |
+
window_size,
|
715 |
+
mlp_ratio,
|
716 |
+
qkv_bias,
|
717 |
+
qk_scale,
|
718 |
+
drop_rate,
|
719 |
+
attn_drop_rate,
|
720 |
+
drop_path_rate,
|
721 |
+
norm_layer,
|
722 |
+
ape,
|
723 |
+
patch_norm,
|
724 |
+
)
|
725 |
+
|
726 |
+
self._out_features = cfg.MODEL.SWIN.OUT_FEATURES
|
727 |
+
|
728 |
+
self._out_feature_strides = {
|
729 |
+
"res2": 4,
|
730 |
+
"res3": 8,
|
731 |
+
"res4": 16,
|
732 |
+
"res5": 32,
|
733 |
+
}
|
734 |
+
self._out_feature_channels = {
|
735 |
+
"res2": self.num_features[0],
|
736 |
+
"res3": self.num_features[1],
|
737 |
+
"res4": self.num_features[2],
|
738 |
+
"res5": self.num_features[3],
|
739 |
+
}
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
"""
|
743 |
+
Args:
|
744 |
+
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
|
745 |
+
Returns:
|
746 |
+
dict[str->Tensor]: names and the corresponding features
|
747 |
+
"""
|
748 |
+
assert (
|
749 |
+
x.dim() == 4
|
750 |
+
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
|
751 |
+
outputs = {}
|
752 |
+
y = super().forward(x)
|
753 |
+
for k in y.keys():
|
754 |
+
if k in self._out_features:
|
755 |
+
outputs[k] = y[k]
|
756 |
+
return outputs
|
757 |
+
|
758 |
+
def output_shape(self):
|
759 |
+
return {
|
760 |
+
name: ShapeSpec(
|
761 |
+
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
|
762 |
+
)
|
763 |
+
for name in self._out_features
|
764 |
+
}
|
765 |
+
|
766 |
+
@property
|
767 |
+
def size_divisibility(self):
|
768 |
+
return 32
|
ACT_DP_multitask/detr/models/mask_former/modeling/criterion.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
"""
|
4 |
+
MaskFormer criterion.
|
5 |
+
"""
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from detectron2.utils.comm import get_world_size
|
11 |
+
|
12 |
+
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list
|
13 |
+
|
14 |
+
|
15 |
+
def dice_loss(inputs, targets, num_masks):
|
16 |
+
"""
|
17 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
18 |
+
Args:
|
19 |
+
inputs: A float tensor of arbitrary shape.
|
20 |
+
The predictions for each example.
|
21 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
22 |
+
classification label for each element in inputs
|
23 |
+
(0 for the negative class and 1 for the positive class).
|
24 |
+
"""
|
25 |
+
inputs = inputs.sigmoid()
|
26 |
+
inputs = inputs.flatten(1)
|
27 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
28 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
29 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
30 |
+
return loss.sum() / num_masks
|
31 |
+
|
32 |
+
|
33 |
+
def sigmoid_focal_loss(inputs, targets, num_masks, alpha: float = 0.25, gamma: float = 2):
|
34 |
+
"""
|
35 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
36 |
+
Args:
|
37 |
+
inputs: A float tensor of arbitrary shape.
|
38 |
+
The predictions for each example.
|
39 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
40 |
+
classification label for each element in inputs
|
41 |
+
(0 for the negative class and 1 for the positive class).
|
42 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
43 |
+
positive vs negative examples. Default = -1 (no weighting).
|
44 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
45 |
+
balance easy vs hard examples.
|
46 |
+
Returns:
|
47 |
+
Loss tensor
|
48 |
+
"""
|
49 |
+
prob = inputs.sigmoid()
|
50 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
51 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
52 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
53 |
+
|
54 |
+
if alpha >= 0:
|
55 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
56 |
+
loss = alpha_t * loss
|
57 |
+
|
58 |
+
return loss.mean(1).sum() / num_masks
|
59 |
+
|
60 |
+
|
61 |
+
class SetCriterion(nn.Module):
|
62 |
+
"""This class computes the loss for DETR.
|
63 |
+
The process happens in two steps:
|
64 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
65 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
|
69 |
+
"""Create the criterion.
|
70 |
+
Parameters:
|
71 |
+
num_classes: number of object categories, omitting the special no-object category
|
72 |
+
matcher: module able to compute a matching between targets and proposals
|
73 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
74 |
+
eos_coef: relative classification weight applied to the no-object category
|
75 |
+
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
76 |
+
"""
|
77 |
+
super().__init__()
|
78 |
+
self.num_classes = num_classes
|
79 |
+
self.matcher = matcher
|
80 |
+
self.weight_dict = weight_dict
|
81 |
+
self.eos_coef = eos_coef
|
82 |
+
self.losses = losses
|
83 |
+
empty_weight = torch.ones(self.num_classes + 1)
|
84 |
+
empty_weight[-1] = self.eos_coef
|
85 |
+
self.register_buffer("empty_weight", empty_weight)
|
86 |
+
|
87 |
+
def loss_labels(self, outputs, targets, indices, num_masks):
|
88 |
+
"""Classification loss (NLL)
|
89 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
90 |
+
"""
|
91 |
+
assert "pred_logits" in outputs
|
92 |
+
src_logits = outputs["pred_logits"]
|
93 |
+
|
94 |
+
idx = self._get_src_permutation_idx(indices)
|
95 |
+
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
96 |
+
target_classes = torch.full(
|
97 |
+
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
|
98 |
+
)
|
99 |
+
target_classes[idx] = target_classes_o
|
100 |
+
|
101 |
+
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
|
102 |
+
losses = {"loss_ce": loss_ce}
|
103 |
+
return losses
|
104 |
+
|
105 |
+
def loss_masks(self, outputs, targets, indices, num_masks):
|
106 |
+
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
107 |
+
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
108 |
+
"""
|
109 |
+
assert "pred_masks" in outputs
|
110 |
+
|
111 |
+
src_idx = self._get_src_permutation_idx(indices)
|
112 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
113 |
+
src_masks = outputs["pred_masks"]
|
114 |
+
src_masks = src_masks[src_idx]
|
115 |
+
masks = [t["masks"] for t in targets]
|
116 |
+
# TODO use valid to mask invalid areas due to padding in loss
|
117 |
+
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
|
118 |
+
target_masks = target_masks.to(src_masks)
|
119 |
+
target_masks = target_masks[tgt_idx]
|
120 |
+
|
121 |
+
# upsample predictions to the target size
|
122 |
+
src_masks = F.interpolate(
|
123 |
+
src_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
|
124 |
+
)
|
125 |
+
src_masks = src_masks[:, 0].flatten(1)
|
126 |
+
|
127 |
+
target_masks = target_masks.flatten(1)
|
128 |
+
target_masks = target_masks.view(src_masks.shape)
|
129 |
+
losses = {
|
130 |
+
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_masks),
|
131 |
+
"loss_dice": dice_loss(src_masks, target_masks, num_masks),
|
132 |
+
}
|
133 |
+
return losses
|
134 |
+
|
135 |
+
def _get_src_permutation_idx(self, indices):
|
136 |
+
# permute predictions following indices
|
137 |
+
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
138 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
139 |
+
return batch_idx, src_idx
|
140 |
+
|
141 |
+
def _get_tgt_permutation_idx(self, indices):
|
142 |
+
# permute targets following indices
|
143 |
+
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
144 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
145 |
+
return batch_idx, tgt_idx
|
146 |
+
|
147 |
+
def get_loss(self, loss, outputs, targets, indices, num_masks):
|
148 |
+
loss_map = {"labels": self.loss_labels, "masks": self.loss_masks}
|
149 |
+
assert loss in loss_map, f"do you really want to compute {loss} loss?"
|
150 |
+
return loss_map[loss](outputs, targets, indices, num_masks)
|
151 |
+
|
152 |
+
def forward(self, outputs, targets):
|
153 |
+
"""This performs the loss computation.
|
154 |
+
Parameters:
|
155 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
156 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
157 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
158 |
+
"""
|
159 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
|
160 |
+
|
161 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
162 |
+
indices = self.matcher(outputs_without_aux, targets)
|
163 |
+
|
164 |
+
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
165 |
+
num_masks = sum(len(t["labels"]) for t in targets)
|
166 |
+
num_masks = torch.as_tensor(
|
167 |
+
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
|
168 |
+
)
|
169 |
+
if is_dist_avail_and_initialized():
|
170 |
+
torch.distributed.all_reduce(num_masks)
|
171 |
+
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
|
172 |
+
|
173 |
+
# Compute all the requested losses
|
174 |
+
losses = {}
|
175 |
+
for loss in self.losses:
|
176 |
+
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
|
177 |
+
|
178 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
179 |
+
if "aux_outputs" in outputs:
|
180 |
+
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
|
181 |
+
indices = self.matcher(aux_outputs, targets)
|
182 |
+
for loss in self.losses:
|
183 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
|
184 |
+
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
|
185 |
+
losses.update(l_dict)
|
186 |
+
|
187 |
+
return losses
|
ACT_DP_multitask/detr/models/mask_former/modeling/heads/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
ACT_DP_multitask/detr/models/mask_former/modeling/heads/mask_former_head.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from copy import deepcopy
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
12 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
13 |
+
|
14 |
+
from ..transformer.transformer_predictor import TransformerPredictor
|
15 |
+
from .pixel_decoder import build_pixel_decoder
|
16 |
+
|
17 |
+
|
18 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
19 |
+
class MaskFormerHead(nn.Module):
|
20 |
+
|
21 |
+
_version = 2
|
22 |
+
|
23 |
+
def _load_from_state_dict(
|
24 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
25 |
+
):
|
26 |
+
version = local_metadata.get("version", None)
|
27 |
+
if version is None or version < 2:
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
# logger.debug(f"{k} ==> {newk}")
|
36 |
+
if newk != k:
|
37 |
+
state_dict[newk] = state_dict[k]
|
38 |
+
del state_dict[k]
|
39 |
+
scratch = False
|
40 |
+
|
41 |
+
if not scratch:
|
42 |
+
logger.warning(
|
43 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
44 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
45 |
+
)
|
46 |
+
|
47 |
+
@configurable
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_shape: Dict[str, ShapeSpec],
|
51 |
+
*,
|
52 |
+
num_classes: int,
|
53 |
+
pixel_decoder: nn.Module,
|
54 |
+
loss_weight: float = 1.0,
|
55 |
+
ignore_value: int = -1,
|
56 |
+
# extra parameters
|
57 |
+
transformer_predictor: nn.Module,
|
58 |
+
transformer_in_feature: str,
|
59 |
+
):
|
60 |
+
"""
|
61 |
+
NOTE: this interface is experimental.
|
62 |
+
Args:
|
63 |
+
input_shape: shapes (channels and stride) of the input features
|
64 |
+
num_classes: number of classes to predict
|
65 |
+
pixel_decoder: the pixel decoder module
|
66 |
+
loss_weight: loss weight
|
67 |
+
ignore_value: category id to be ignored during training.
|
68 |
+
transformer_predictor: the transformer decoder that makes prediction
|
69 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
70 |
+
"""
|
71 |
+
super().__init__()
|
72 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
73 |
+
self.in_features = [k for k, v in input_shape]
|
74 |
+
feature_strides = [v.stride for k, v in input_shape]
|
75 |
+
feature_channels = [v.channels for k, v in input_shape]
|
76 |
+
|
77 |
+
self.ignore_value = ignore_value
|
78 |
+
self.common_stride = 4
|
79 |
+
self.loss_weight = loss_weight
|
80 |
+
|
81 |
+
self.pixel_decoder = pixel_decoder
|
82 |
+
self.predictor = transformer_predictor
|
83 |
+
self.transformer_in_feature = transformer_in_feature
|
84 |
+
|
85 |
+
self.num_classes = num_classes
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
89 |
+
return {
|
90 |
+
"input_shape": {
|
91 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
92 |
+
},
|
93 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
94 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
95 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
96 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
97 |
+
"transformer_in_feature": cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE,
|
98 |
+
"transformer_predictor": TransformerPredictor(
|
99 |
+
cfg,
|
100 |
+
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
101 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder"
|
102 |
+
else input_shape[cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE].channels,
|
103 |
+
mask_classification=True,
|
104 |
+
),
|
105 |
+
}
|
106 |
+
|
107 |
+
def forward(self, features):
|
108 |
+
return self.layers(features)
|
109 |
+
|
110 |
+
def layers(self, features):
|
111 |
+
mask_features, transformer_encoder_features = self.pixel_decoder.forward_features(features)
|
112 |
+
if self.transformer_in_feature == "transformer_encoder":
|
113 |
+
assert (
|
114 |
+
transformer_encoder_features is not None
|
115 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
116 |
+
predictions = self.predictor(transformer_encoder_features, mask_features)
|
117 |
+
else:
|
118 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features)
|
119 |
+
return predictions
|
ACT_DP_multitask/detr/models/mask_former/modeling/heads/per_pixel_baseline.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import fvcore.nn.weight_init as weight_init
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.config import configurable
|
10 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
11 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
12 |
+
|
13 |
+
from ..transformer.transformer_predictor import TransformerPredictor
|
14 |
+
from .pixel_decoder import build_pixel_decoder
|
15 |
+
|
16 |
+
|
17 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
18 |
+
class PerPixelBaselineHead(nn.Module):
|
19 |
+
|
20 |
+
_version = 2
|
21 |
+
|
22 |
+
def _load_from_state_dict(
|
23 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
24 |
+
):
|
25 |
+
version = local_metadata.get("version", None)
|
26 |
+
if version is None or version < 2:
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
# logger.warning(f"{k} ==> {newk}")
|
36 |
+
if newk != k:
|
37 |
+
state_dict[newk] = state_dict[k]
|
38 |
+
del state_dict[k]
|
39 |
+
scratch = False
|
40 |
+
|
41 |
+
if not scratch:
|
42 |
+
logger.warning(
|
43 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
44 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
45 |
+
)
|
46 |
+
|
47 |
+
@configurable
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_shape: Dict[str, ShapeSpec],
|
51 |
+
*,
|
52 |
+
num_classes: int,
|
53 |
+
pixel_decoder: nn.Module,
|
54 |
+
loss_weight: float = 1.0,
|
55 |
+
ignore_value: int = -1,
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
NOTE: this interface is experimental.
|
59 |
+
Args:
|
60 |
+
input_shape: shapes (channels and stride) of the input features
|
61 |
+
num_classes: number of classes to predict
|
62 |
+
pixel_decoder: the pixel decoder module
|
63 |
+
loss_weight: loss weight
|
64 |
+
ignore_value: category id to be ignored during training.
|
65 |
+
"""
|
66 |
+
super().__init__()
|
67 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
68 |
+
self.in_features = [k for k, v in input_shape]
|
69 |
+
feature_strides = [v.stride for k, v in input_shape]
|
70 |
+
feature_channels = [v.channels for k, v in input_shape]
|
71 |
+
|
72 |
+
self.ignore_value = ignore_value
|
73 |
+
self.common_stride = 4
|
74 |
+
self.loss_weight = loss_weight
|
75 |
+
|
76 |
+
self.pixel_decoder = pixel_decoder
|
77 |
+
self.predictor = Conv2d(
|
78 |
+
self.pixel_decoder.mask_dim, num_classes, kernel_size=1, stride=1, padding=0
|
79 |
+
)
|
80 |
+
weight_init.c2_msra_fill(self.predictor)
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
84 |
+
return {
|
85 |
+
"input_shape": {
|
86 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
87 |
+
},
|
88 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
89 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
90 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
91 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
92 |
+
}
|
93 |
+
|
94 |
+
def forward(self, features, targets=None):
|
95 |
+
"""
|
96 |
+
Returns:
|
97 |
+
In training, returns (None, dict of losses)
|
98 |
+
In inference, returns (CxHxW logits, {})
|
99 |
+
"""
|
100 |
+
x = self.layers(features)
|
101 |
+
if self.training:
|
102 |
+
return None, self.losses(x, targets)
|
103 |
+
else:
|
104 |
+
x = F.interpolate(
|
105 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
106 |
+
)
|
107 |
+
return x, {}
|
108 |
+
|
109 |
+
def layers(self, features):
|
110 |
+
x, _ = self.pixel_decoder.forward_features(features)
|
111 |
+
x = self.predictor(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
def losses(self, predictions, targets):
|
115 |
+
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163
|
116 |
+
predictions = F.interpolate(
|
117 |
+
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
118 |
+
)
|
119 |
+
loss = F.cross_entropy(
|
120 |
+
predictions, targets, reduction="mean", ignore_index=self.ignore_value
|
121 |
+
)
|
122 |
+
losses = {"loss_sem_seg": loss * self.loss_weight}
|
123 |
+
return losses
|
124 |
+
|
125 |
+
|
126 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
127 |
+
class PerPixelBaselinePlusHead(PerPixelBaselineHead):
|
128 |
+
def _load_from_state_dict(
|
129 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
130 |
+
):
|
131 |
+
version = local_metadata.get("version", None)
|
132 |
+
if version is None or version < 2:
|
133 |
+
# Do not warn if train from scratch
|
134 |
+
scratch = True
|
135 |
+
logger = logging.getLogger(__name__)
|
136 |
+
for k in list(state_dict.keys()):
|
137 |
+
newk = k
|
138 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
139 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
140 |
+
logger.debug(f"{k} ==> {newk}")
|
141 |
+
if newk != k:
|
142 |
+
state_dict[newk] = state_dict[k]
|
143 |
+
del state_dict[k]
|
144 |
+
scratch = False
|
145 |
+
|
146 |
+
if not scratch:
|
147 |
+
logger.warning(
|
148 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
149 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
150 |
+
)
|
151 |
+
|
152 |
+
@configurable
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
input_shape: Dict[str, ShapeSpec],
|
156 |
+
*,
|
157 |
+
# extra parameters
|
158 |
+
transformer_predictor: nn.Module,
|
159 |
+
transformer_in_feature: str,
|
160 |
+
deep_supervision: bool,
|
161 |
+
# inherit parameters
|
162 |
+
num_classes: int,
|
163 |
+
pixel_decoder: nn.Module,
|
164 |
+
loss_weight: float = 1.0,
|
165 |
+
ignore_value: int = -1,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
NOTE: this interface is experimental.
|
169 |
+
Args:
|
170 |
+
input_shape: shapes (channels and stride) of the input features
|
171 |
+
transformer_predictor: the transformer decoder that makes prediction
|
172 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
173 |
+
deep_supervision: whether or not to add supervision to the output of
|
174 |
+
every transformer decoder layer
|
175 |
+
num_classes: number of classes to predict
|
176 |
+
pixel_decoder: the pixel decoder module
|
177 |
+
loss_weight: loss weight
|
178 |
+
ignore_value: category id to be ignored during training.
|
179 |
+
"""
|
180 |
+
super().__init__(
|
181 |
+
input_shape,
|
182 |
+
num_classes=num_classes,
|
183 |
+
pixel_decoder=pixel_decoder,
|
184 |
+
loss_weight=loss_weight,
|
185 |
+
ignore_value=ignore_value,
|
186 |
+
)
|
187 |
+
|
188 |
+
del self.predictor
|
189 |
+
|
190 |
+
self.predictor = transformer_predictor
|
191 |
+
self.transformer_in_feature = transformer_in_feature
|
192 |
+
self.deep_supervision = deep_supervision
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
196 |
+
ret = super().from_config(cfg, input_shape)
|
197 |
+
ret["transformer_in_feature"] = cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE
|
198 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder":
|
199 |
+
in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
200 |
+
else:
|
201 |
+
in_channels = input_shape[ret["transformer_in_feature"]].channels
|
202 |
+
ret["transformer_predictor"] = TransformerPredictor(
|
203 |
+
cfg, in_channels, mask_classification=False
|
204 |
+
)
|
205 |
+
ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
206 |
+
return ret
|
207 |
+
|
208 |
+
def forward(self, features, targets=None):
|
209 |
+
"""
|
210 |
+
Returns:
|
211 |
+
In training, returns (None, dict of losses)
|
212 |
+
In inference, returns (CxHxW logits, {})
|
213 |
+
"""
|
214 |
+
x, aux_outputs = self.layers(features)
|
215 |
+
if self.training:
|
216 |
+
if self.deep_supervision:
|
217 |
+
losses = self.losses(x, targets)
|
218 |
+
for i, aux_output in enumerate(aux_outputs):
|
219 |
+
losses["loss_sem_seg" + f"_{i}"] = self.losses(
|
220 |
+
aux_output["pred_masks"], targets
|
221 |
+
)["loss_sem_seg"]
|
222 |
+
return None, losses
|
223 |
+
else:
|
224 |
+
return None, self.losses(x, targets)
|
225 |
+
else:
|
226 |
+
x = F.interpolate(
|
227 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
228 |
+
)
|
229 |
+
return x, {}
|
230 |
+
|
231 |
+
def layers(self, features):
|
232 |
+
mask_features, transformer_encoder_features = self.pixel_decoder.forward_features(features)
|
233 |
+
if self.transformer_in_feature == "transformer_encoder":
|
234 |
+
assert (
|
235 |
+
transformer_encoder_features is not None
|
236 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
237 |
+
predictions = self.predictor(transformer_encoder_features, mask_features)
|
238 |
+
else:
|
239 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features)
|
240 |
+
if self.deep_supervision:
|
241 |
+
return predictions["pred_masks"], predictions["aux_outputs"]
|
242 |
+
else:
|
243 |
+
return predictions["pred_masks"], None
|
ACT_DP_multitask/detr/models/mask_former/modeling/heads/pixel_decoder.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import fvcore.nn.weight_init as weight_init
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.config import configurable
|
10 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
11 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
12 |
+
|
13 |
+
from ..transformer.position_encoding import PositionEmbeddingSine
|
14 |
+
from ..transformer.transformer import TransformerEncoder, TransformerEncoderLayer
|
15 |
+
|
16 |
+
|
17 |
+
def build_pixel_decoder(cfg, input_shape):
|
18 |
+
"""
|
19 |
+
Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
|
20 |
+
"""
|
21 |
+
name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME
|
22 |
+
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
|
23 |
+
forward_features = getattr(model, "forward_features", None)
|
24 |
+
if not callable(forward_features):
|
25 |
+
raise ValueError(
|
26 |
+
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
|
27 |
+
f"Please implement forward_features for {name} to only return mask features."
|
28 |
+
)
|
29 |
+
return model
|
30 |
+
|
31 |
+
|
32 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
33 |
+
class BasePixelDecoder(nn.Module):
|
34 |
+
# @configurable
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
input_shape: Dict[str, ShapeSpec],
|
38 |
+
# *,
|
39 |
+
conv_dim: int,
|
40 |
+
mask_dim: int,
|
41 |
+
norm: Optional[Union[str, Callable]] = None,
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
NOTE: this interface is experimental.
|
45 |
+
Args:
|
46 |
+
input_shape: shapes (channels and stride) of the input features
|
47 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
48 |
+
mask_dim: number of output channels for the final conv layer.
|
49 |
+
norm (str or callable): normalization for all conv layers
|
50 |
+
"""
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
54 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
55 |
+
feature_channels = [v.channels for k, v in input_shape]
|
56 |
+
|
57 |
+
lateral_convs = []
|
58 |
+
output_convs = []
|
59 |
+
|
60 |
+
use_bias = norm == ""
|
61 |
+
for idx, in_channels in enumerate(feature_channels):
|
62 |
+
if idx == len(self.in_features) - 1:
|
63 |
+
output_norm = get_norm(norm, conv_dim)
|
64 |
+
output_conv = Conv2d(
|
65 |
+
in_channels,
|
66 |
+
conv_dim,
|
67 |
+
kernel_size=3,
|
68 |
+
stride=1,
|
69 |
+
padding=1,
|
70 |
+
bias=use_bias,
|
71 |
+
norm=output_norm,
|
72 |
+
activation=F.relu,
|
73 |
+
)
|
74 |
+
weight_init.c2_xavier_fill(output_conv)
|
75 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
76 |
+
|
77 |
+
lateral_convs.append(None)
|
78 |
+
output_convs.append(output_conv)
|
79 |
+
else:
|
80 |
+
lateral_norm = get_norm(norm, conv_dim)
|
81 |
+
output_norm = get_norm(norm, conv_dim)
|
82 |
+
|
83 |
+
lateral_conv = Conv2d(
|
84 |
+
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
|
85 |
+
)
|
86 |
+
output_conv = Conv2d(
|
87 |
+
conv_dim,
|
88 |
+
conv_dim,
|
89 |
+
kernel_size=3,
|
90 |
+
stride=1,
|
91 |
+
padding=1,
|
92 |
+
bias=use_bias,
|
93 |
+
norm=output_norm,
|
94 |
+
activation=F.relu,
|
95 |
+
)
|
96 |
+
weight_init.c2_xavier_fill(lateral_conv)
|
97 |
+
weight_init.c2_xavier_fill(output_conv)
|
98 |
+
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
|
99 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
100 |
+
|
101 |
+
lateral_convs.append(lateral_conv)
|
102 |
+
output_convs.append(output_conv)
|
103 |
+
# Place convs into top-down order (from low to high resolution)
|
104 |
+
# to make the top-down computation in forward clearer.
|
105 |
+
self.lateral_convs = lateral_convs[::-1]
|
106 |
+
self.output_convs = output_convs[::-1]
|
107 |
+
|
108 |
+
self.mask_dim = mask_dim
|
109 |
+
self.mask_features = Conv2d(
|
110 |
+
conv_dim,
|
111 |
+
mask_dim,
|
112 |
+
kernel_size=3,
|
113 |
+
stride=1,
|
114 |
+
padding=1,
|
115 |
+
)
|
116 |
+
weight_init.c2_xavier_fill(self.mask_features)
|
117 |
+
|
118 |
+
# @classmethod
|
119 |
+
# def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
120 |
+
# ret = {}
|
121 |
+
# ret["input_shape"] = {
|
122 |
+
# k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
123 |
+
# }
|
124 |
+
# ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
125 |
+
# ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
126 |
+
# ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
|
127 |
+
# return ret
|
128 |
+
|
129 |
+
def forward_features(self, features):
|
130 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
131 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
132 |
+
x = features[f]
|
133 |
+
lateral_conv = self.lateral_convs[idx]
|
134 |
+
output_conv = self.output_convs[idx]
|
135 |
+
if lateral_conv is None:
|
136 |
+
y = output_conv(x)
|
137 |
+
else:
|
138 |
+
cur_fpn = lateral_conv(x)
|
139 |
+
# Following FPN implementation, we use nearest upsampling here
|
140 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
141 |
+
y = output_conv(y)
|
142 |
+
return self.mask_features(y), None
|
143 |
+
|
144 |
+
def forward(self, features, targets=None):
|
145 |
+
logger = logging.getLogger(__name__)
|
146 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
147 |
+
return self.forward_features(features)
|
148 |
+
|
149 |
+
|
150 |
+
class TransformerEncoderOnly(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
d_model=512,
|
154 |
+
nhead=8,
|
155 |
+
num_encoder_layers=6,
|
156 |
+
dim_feedforward=2048,
|
157 |
+
dropout=0.1,
|
158 |
+
activation="relu",
|
159 |
+
normalize_before=False,
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
|
163 |
+
encoder_layer = TransformerEncoderLayer(
|
164 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
165 |
+
)
|
166 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
167 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
168 |
+
|
169 |
+
self._reset_parameters()
|
170 |
+
|
171 |
+
self.d_model = d_model
|
172 |
+
self.nhead = nhead
|
173 |
+
|
174 |
+
def _reset_parameters(self):
|
175 |
+
for p in self.parameters():
|
176 |
+
if p.dim() > 1:
|
177 |
+
nn.init.xavier_uniform_(p)
|
178 |
+
|
179 |
+
def forward(self, src, mask, pos_embed):
|
180 |
+
# flatten NxCxHxW to HWxNxC
|
181 |
+
bs, c, h, w = src.shape
|
182 |
+
src = src.flatten(2).permute(2, 0, 1)
|
183 |
+
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
|
184 |
+
if mask is not None:
|
185 |
+
mask = mask.flatten(1)
|
186 |
+
|
187 |
+
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
188 |
+
return memory.permute(1, 2, 0).view(bs, c, h, w)
|
189 |
+
|
190 |
+
|
191 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
192 |
+
class TransformerEncoderPixelDecoder(BasePixelDecoder):
|
193 |
+
@configurable
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
input_shape: Dict[str, ShapeSpec],
|
197 |
+
*,
|
198 |
+
transformer_dropout: float,
|
199 |
+
transformer_nheads: int,
|
200 |
+
transformer_dim_feedforward: int,
|
201 |
+
transformer_enc_layers: int,
|
202 |
+
transformer_pre_norm: bool,
|
203 |
+
conv_dim: int,
|
204 |
+
mask_dim: int,
|
205 |
+
norm: Optional[Union[str, Callable]] = None,
|
206 |
+
):
|
207 |
+
"""
|
208 |
+
NOTE: this interface is experimental.
|
209 |
+
Args:
|
210 |
+
input_shape: shapes (channels and stride) of the input features
|
211 |
+
transformer_dropout: dropout probability in transformer
|
212 |
+
transformer_nheads: number of heads in transformer
|
213 |
+
transformer_dim_feedforward: dimension of feedforward network
|
214 |
+
transformer_enc_layers: number of transformer encoder layers
|
215 |
+
transformer_pre_norm: whether to use pre-layernorm or not
|
216 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
217 |
+
mask_dim: number of output channels for the final conv layer.
|
218 |
+
norm (str or callable): normalization for all conv layers
|
219 |
+
"""
|
220 |
+
super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm)
|
221 |
+
|
222 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
223 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
224 |
+
feature_strides = [v.stride for k, v in input_shape]
|
225 |
+
feature_channels = [v.channels for k, v in input_shape]
|
226 |
+
|
227 |
+
in_channels = feature_channels[len(self.in_features) - 1]
|
228 |
+
self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
|
229 |
+
weight_init.c2_xavier_fill(self.input_proj)
|
230 |
+
self.transformer = TransformerEncoderOnly(
|
231 |
+
d_model=conv_dim,
|
232 |
+
dropout=transformer_dropout,
|
233 |
+
nhead=transformer_nheads,
|
234 |
+
dim_feedforward=transformer_dim_feedforward,
|
235 |
+
num_encoder_layers=transformer_enc_layers,
|
236 |
+
normalize_before=transformer_pre_norm,
|
237 |
+
)
|
238 |
+
N_steps = conv_dim // 2
|
239 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
240 |
+
|
241 |
+
# update layer
|
242 |
+
use_bias = norm == ""
|
243 |
+
output_norm = get_norm(norm, conv_dim)
|
244 |
+
output_conv = Conv2d(
|
245 |
+
conv_dim,
|
246 |
+
conv_dim,
|
247 |
+
kernel_size=3,
|
248 |
+
stride=1,
|
249 |
+
padding=1,
|
250 |
+
bias=use_bias,
|
251 |
+
norm=output_norm,
|
252 |
+
activation=F.relu,
|
253 |
+
)
|
254 |
+
weight_init.c2_xavier_fill(output_conv)
|
255 |
+
delattr(self, "layer_{}".format(len(self.in_features)))
|
256 |
+
self.add_module("layer_{}".format(len(self.in_features)), output_conv)
|
257 |
+
self.output_convs[0] = output_conv
|
258 |
+
|
259 |
+
@classmethod
|
260 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
261 |
+
ret = super().from_config(cfg, input_shape)
|
262 |
+
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
263 |
+
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
264 |
+
ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
265 |
+
ret[
|
266 |
+
"transformer_enc_layers"
|
267 |
+
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
|
268 |
+
ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
269 |
+
return ret
|
270 |
+
|
271 |
+
def forward_features(self, features):
|
272 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
273 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
274 |
+
x = features[f]
|
275 |
+
lateral_conv = self.lateral_convs[idx]
|
276 |
+
output_conv = self.output_convs[idx]
|
277 |
+
if lateral_conv is None:
|
278 |
+
transformer = self.input_proj(x)
|
279 |
+
pos = self.pe_layer(x)
|
280 |
+
transformer = self.transformer(transformer, None, pos)
|
281 |
+
y = output_conv(transformer)
|
282 |
+
# save intermediate feature as input to Transformer decoder
|
283 |
+
transformer_encoder_features = transformer
|
284 |
+
else:
|
285 |
+
cur_fpn = lateral_conv(x)
|
286 |
+
# Following FPN implementation, we use nearest upsampling here
|
287 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
288 |
+
y = output_conv(y)
|
289 |
+
return self.mask_features(y), transformer_encoder_features
|
290 |
+
|
291 |
+
def forward(self, features, targets=None):
|
292 |
+
logger = logging.getLogger(__name__)
|
293 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
294 |
+
return self.forward_features(features)
|