Model Card of research-backup/t5-large-squad-qg-no-paragraph
This model is fine-tuned version of t5-large for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg
.
This model is fine-tuned without pargraph information but only the sentence that contains the answer.
Overview
- Language model: t5-large
- Language: en
- Training data: lmqg/qg_squad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="research-backup/t5-large-squad-qg-no-paragraph")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "research-backup/t5-large-squad-qg-no-paragraph")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 90.88 | default | lmqg/qg_squad |
Bleu_1 | 57.49 | default | lmqg/qg_squad |
Bleu_2 | 41.59 | default | lmqg/qg_squad |
Bleu_3 | 32.1 | default | lmqg/qg_squad |
Bleu_4 | 25.36 | default | lmqg/qg_squad |
METEOR | 26.28 | default | lmqg/qg_squad |
MoverScore | 64.44 | default | lmqg/qg_squad |
ROUGE_L | 52.53 | default | lmqg/qg_squad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['sentence_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: t5-large
- max_length: 128
- max_length_output: 32
- epoch: 6
- batch: 16
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 113
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train research-backup/t5-large-squad-qg-no-paragraph
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_squadself-reported25.360
- ROUGE-L (Question Generation) on lmqg/qg_squadself-reported52.530
- METEOR (Question Generation) on lmqg/qg_squadself-reported26.280
- BERTScore (Question Generation) on lmqg/qg_squadself-reported90.880
- MoverScore (Question Generation) on lmqg/qg_squadself-reported64.440