File size: 6,733 Bytes
0ea9ef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import torch
import numpy as np
import triton_python_backend_utils as pb_utils
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
@staticmethod
def auto_complete_config(auto_complete_model_config):
"""`auto_complete_config` is called only once when loading the model
assuming the server was not started with
`--disable-auto-complete-config`. Implementing this function is
optional. No implementation of `auto_complete_config` will do nothing.
This function can be used to set `max_batch_size`, `input` and `output`
properties of the model using `set_max_batch_size`, `add_input`, and
`add_output`. These properties will allow Triton to load the model with
minimal model configuration in absence of a configuration file. This
function returns the `pb_utils.ModelConfig` object with these
properties. You can use the `as_dict` function to gain read-only access
to the `pb_utils.ModelConfig` object. The `pb_utils.ModelConfig` object
being returned from here will be used as the final configuration for
the model.
Note: The Python interpreter used to invoke this function will be
destroyed upon returning from this function and as a result none of the
objects created here will be available in the `initialize`, `execute`,
or `finalize` functions.
Parameters
----------
auto_complete_model_config : pb_utils.ModelConfig
An object containing the existing model configuration. You can build
upon the configuration given by this object when setting the
properties for this model.
Returns
-------
pb_utils.ModelConfig
An object containing the auto-completed model configuration
"""
inputs = [{
'name': 'PROMPT',
'data_type': 'TYPE_STRING',
'dims': [-1]
}, {
'name': 'IMAGES',
'data_type': 'TYPE_STRING', # Changed from TYPE_FP16 to TYPE_STRING
'dims': [-1] # Changed to indicate a variable-length array of strings
}]
outputs = [{
'name': 'RESULTS',
'data_type': 'TYPE_STRING',
'dims': [-1]
}]
config = auto_complete_model_config.as_dict()
input_names = []
output_names = []
for input in config['input']:
input_names.append(input['name'])
for output in config['output']:
output_names.append(output['name'])
for input in inputs:
if input['name'] not in input_names:
auto_complete_model_config.add_input(input)
for output in outputs:
if output['name'] not in output_names:
auto_complete_model_config.add_output(output)
auto_complete_model_config.set_dynamic_batching()
return auto_complete_model_config
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device
ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
chat_handler = Llava15ChatHandler(clip_model_path="/weights/mmproj-model-f16.gguf", verbose=True)
self.model = Llama(model_path="/weights/ggml-model-q4_0.gguf", chat_handler=chat_handler, n_ctx=2048, logits_all=True, n_gpu_layers=-1)
print('Initialized...')
def run_inference(self, prompt, image):
image_data = f"data:image/png;base64,{image}"
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_data}},
{"type" : "text", "text": prompt}
]
}
]
result = self.model.create_chat_completion(messages=messages)
output_string = result["choices"][0]["message"]["content"]
output_data = np.array([output_string.encode('utf-8')], dtype=object)
return output_data
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
for request in requests:
# Perform inference on the request and append it to responses
# list...
prompt = [
t.decode("UTF-8")
for t in pb_utils.get_input_tensor_by_name(request, "PROMPT")
.as_numpy()
.tolist()
][0]
image = [
t.decode("UTF-8")
for t in pb_utils.get_input_tensor_by_name(request, "IMAGES")
.as_numpy()
.tolist()
][0]
results = self.run_inference(prompt, image)
# Sending results
inference_response = pb_utils.InferenceResponse(output_tensors=[
pb_utils.Tensor(
"RESULTS",
results,
)
])
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')
|