File size: 2,190 Bytes
0472b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
language:
- en
base_model:
- sshleifer/tiny-gpt2
new_version: sshleifer/tiny-gpt2
pipeline_tag: text-generation
library_name: transformers
---
Tiny-GPT2 Text Generation Project
This repository provides resources to run and fine-tune the sshleifer/tiny-gpt2 model locally on a CPU, suitable for laptops with 8GB or 16GB RAM. The goal is to enable students to learn about AI model workings, experiment, and conduct research.
Prerequisites

Python: Version 3.10.9 recommended (3.9.10 also works).
Hardware: Minimum 8GB RAM, CPU-only (GPU optional but not required).
Hugging Face Account: Required for downloading model weights (create at huggingface.co).

Setup Instructions

Create a Virtual Environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate


Install Libraries:
pip install torch==2.3.0 transformers==4.38.2 huggingface_hub==0.22.2 datasets==2.21.0 numpy==1.26.4


Download Model Weights:

Copy download_model.py from the repository to your project folder.
Replace YOUR_HUGGINGFACE_API_TOKEN with your Hugging Face token (from huggingface.co/settings/tokens).
Run:python download_model.py




Test the Model:

Copy test_model.py to your project folder.
Run:python test_model.py


Expected output: Generated text starting with "Once upon a time".


Fine-Tune the Model:

Navigate to the fine_tune folder.
Add your dataset as sample_data.txt (or use the provided example).
Run:python fine_tune_model.py


The fine-tuned model will be saved in fine_tuned_model.



Notes for GPU Users

The scripts are configured to run on CPU (CUDA_VISIBLE_DEVICES="" in fine_tune_model.py).
To use a GPU (if available), remove os.environ["CUDA_VISIBLE_DEVICES"] = "" and no_cuda=True from fine_tune_model.py. Ensure your PyTorch installation supports CUDA (run pip install torch==2.3.0+cu121 for GPU support).

Troubleshooting

Memory Issues: If you have 8GB RAM, ensure no other heavy applications are running.
Library Conflicts: Use the exact versions listed above to avoid compatibility issues.
File Not Found: Verify the model files are in tiny-gpt2-model/models--sshleifer--tiny-gpt2/snapshots/5f91d94bd9cd7190a9f3216ff93cd1dd95f2c7be.