File size: 57,289 Bytes
b0fcd94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60e6fb
b0fcd94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60e6fb
 
b0fcd94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60e6fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RWKV6Qwen2 model."""

import math
import inspect
from typing import List, Optional, Tuple, Union, Dict, Any

import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.cache_utils import Cache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
from .configuration_rwkv6qwen2 import RWKV6Qwen2Config

from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer, Qwen2MLP, Qwen2RMSNorm, repeat_kv

logger = logging.get_logger(__name__)


_CHECKPOINT_FOR_DOC = "RWKV/RWKV6Qwen2-7B"
_CONFIG_FOR_DOC = "RWKV6Qwen2Config"

class RWKV6State(Cache):
    def __init__(self) -> None:
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
        self.layer_kv_states: List[torch.Tensor] = []
        self.layer_shift_states:  List[torch.Tensor] = []

    def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx < len(self):
            return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in range(len(self)):
            yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.layer_kv_states)

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Linear Attention variants do not have a maximum length
        return new_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        raise NotImplementedError('Cannot reorder Linear Attention state')

    def get_seq_length(self, layer_idx: int = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        return self._seen_tokens

    def get_max_cache_shape(self) -> Optional[int]:
        """Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
        return None

    def get_max_length(self) -> Optional[int]:
        """
        Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
        """
        return None

    # def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
    #     """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
    #     backward compatibility."""
    #     legacy_cache = ()
    #     for layer_idx in range(len(self)):
    #         legacy_cache += ((self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]),)
    #     return legacy_cache

    # @classmethod
    # #@deprecate_kwarg("num_hidden_layers", version="4.47.0")
    # def from_legacy_cache(
    #     cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, num_hidden_layers: int | None = None
    # ) -> "RWKV6State":
    #     """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
    #     backward compatibility."""
    #     cache = cls()
    #     if past_key_values is not None:
    #         for layer_idx in range(len(past_key_values)):
    #             layer_kv_state, layer_shift_state = past_key_values[layer_idx]
    #             cache.update(layer_kv_state, layer_shift_state, layer_idx)
    #     return cache

    def crop(self, max_length: int):
        # can't implement this for linear attention variants
        return

    @torch.no_grad
    def update(
        self,
        kv_state: torch.Tensor,
        shift_state: torch.Tensor,
        token_count: int,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:        
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += token_count

        # Update the cache
        # There may be skipped layers, fill them with empty lists
        for _ in range(len(self.layer_kv_states), layer_idx + 1):
            self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
            self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
        self.layer_kv_states[layer_idx].copy_(kv_state)
        self.layer_shift_states[layer_idx].copy_(shift_state)

        return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]

    # @deprecate_kwarg("num_hidden_layers", version="4.47.0")
    # def batch_split(
    #     self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
    # ) -> List["DynamicCache"]:
    #     """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
    #     `_split_model_inputs()` in `generation.utils`"""
    #     out = []
    #     for i in range(0, full_batch_size, split_size):
    #         current_split = DynamicCache()
    #         current_split._seen_tokens = self._seen_tokens
    #         current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
    #         current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
    #         out.append(current_split)
    #     return out

    # @classmethod
    # @deprecate_kwarg("num_hidden_layers", version="4.47.0")
    # def from_batch_splits(cls, splits: List["DynamicCache"], num_hidden_layers: int = None) -> "DynamicCache":
    #     """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
    #     `generation.utils`"""
    #     cache = cls()
    #     for idx in range(len(splits[0])):
    #         key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
    #         value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
    #         if key_cache != []:
    #             layer_keys = torch.cat(key_cache, dim=0)
    #             layer_values = torch.cat(value_cache, dim=0)
    #             cache.update(layer_keys, layer_values, idx)
    #     return cache

    # def batch_repeat_interleave(self, repeats: int):
    #     """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
    #     for layer_idx in range(len(self)):
    #         self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
    #         self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)

    # def batch_select_indices(self, indices: torch.Tensor):
    #     """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
    #     for layer_idx in range(len(self)):
    #         self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
    #         self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]

from fla.ops.gla.chunk import chunk_gla
from fla.ops.gla.fused_recurrent import fused_recurrent_gla

class RWKV6Attention(nn.Module):
    def __init__(self, config, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if self.hidden_size % self.num_heads != 0:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, 'attention_output_bias', config.attention_bias))

        self.gate = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        nn.init.zeros_(self.gate.weight)

        n_layer = self.config.num_hidden_layers
        n_embd = self.hidden_size
        dim_att = self.num_heads * self.head_dim
        layer_id = self.layer_idx

        with torch.no_grad():
            ratio_0_to_1 = layer_id / (n_layer - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (layer_id / n_layer)  # 1 to ~0
            ddd = torch.ones(1, 1, n_embd)
            for i in range(n_embd):
                ddd[0, 0, i] = i / n_embd

            ddd = torch.zeros(1, 1, n_embd)
            self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_r = nn.Parameter(torch.zeros_like(ddd))
            self.time_maa_k = nn.Parameter(torch.zeros_like(ddd))
            self.time_maa_v = nn.Parameter(torch.zeros_like(ddd))
            self.time_maa_w = nn.Parameter(torch.zeros_like(ddd))
            self.time_maa_g = nn.Parameter(torch.zeros_like(ddd))

            D_MIX_LORA = 32 if n_embd < 4096 else 64
            self.time_maa_w2 = nn.Parameter(torch.zeros(5, D_MIX_LORA, n_embd).uniform_(-0.01, 0.01))
            self.time_maa_w1 = nn.Parameter(torch.zeros(n_embd, D_MIX_LORA*self.time_maa_w2.size(0)))

            # RWKV-6
            decay_speed = torch.ones(dim_att)
            for n in range(dim_att):
                decay_speed[n] = -6 + 5 * (n / (dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
            self.time_decay = nn.Parameter(decay_speed.reshape(1,1,dim_att))
            D_DECAY_LORA = 64 if n_embd < 4096 else 128
            self.time_decay_w1 = nn.Parameter(torch.zeros(n_embd, D_DECAY_LORA))
            self.time_decay_w2 = nn.Parameter(torch.zeros(D_DECAY_LORA, dim_att).uniform_(-0.01, 0.01))

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[RWKV6State] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
    ):
        output_shift_state = hidden_states[:, -1:].detach().clone()

        bsz, q_len, hidden_dim = hidden_states.size()
        H = self.num_heads

        x = hidden_states

        if use_cache and past_key_value is not None and len(past_key_value) > self.layer_idx:
            input_kv_state, input_shift_state = past_key_value[self.layer_idx]
            xprev = torch.cat([input_shift_state, x[:, :-1]], dim=1)
        else:
            input_kv_state = None
            xprev = F.pad(x, (0, 0, 1, -1))

        dxprev = xprev - x

        xxx = x + dxprev * self.time_maa_x
        xxx = torch.tanh(xxx @ self.time_maa_w1).view(bsz*q_len, self.time_maa_w2.size(0), -1).transpose(0, 1)
        xxx = torch.bmm(xxx, self.time_maa_w2).view(self.time_maa_w2.size(0), bsz, q_len, hidden_dim)

        mr, mk, mv, mw, mg = xxx.unbind(dim=0)
        xr = x + dxprev * (self.time_maa_r + mr)
        xk = x + dxprev * (self.time_maa_k + mk)
        xv = x + dxprev * (self.time_maa_v + mv)
        xw = x + dxprev * (self.time_maa_w + mw)
        xg = x + dxprev * (self.time_maa_g + mg)

        query_states = self.q_proj(xr)
        key_states = self.k_proj(xk)
        value_states = self.v_proj(xv)
        decay_states = (self.time_decay + torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2).to(query_states.dtype)
        gate_states = F.sigmoid(self.gate(xg))

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        decay_states = decay_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        decay_states_log = -decay_states.float().exp()
        #decay_states_log = decay_states_log.clamp(-5) # FIXME - is this necessary?
        key_states = (key_states * (1 - decay_states_log.exp())).to(key_states.dtype)

        query_states = query_states.to(value_states.dtype)
        key_states = key_states.to(value_states.dtype)

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_weights = torch.empty(0, device=x.device)

        scale = query_states.shape[-1] ** -0.5
        output_final_state = not self.training and use_cache and past_key_value is not None
        #attn_output, output_kv_state = ChunkGLAFunction.apply(query_states, key_states, value_states, decay_states_log.float(), scale, input_kv_state, output_final_state)
        #attn_output, output_kv_state = chunk_gla(query_states, key_states, value_states, decay_states_log, scale, input_kv_state, output_final_state)
        attn_output, output_kv_state = fused_recurrent_gla(query_states, key_states, value_states, decay_states_log, None, scale, input_kv_state, output_final_state)

        if output_final_state:
            past_key_value.update(output_kv_state, output_shift_state, q_len, self.layer_idx)

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)
        attn_output = self.o_proj(attn_output * gate_states)

        return attn_output, attn_weights, past_key_value
    
class RWKV6Qwen2DecoderLayer(Qwen2DecoderLayer):
    def __init__(self, config: RWKV6Qwen2Config, layer_idx: int):
        nn.Module.__init__(self)
        self.hidden_size = config.hidden_size

        self.self_attn = RWKV6Attention(config, layer_idx) #QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        self.mlp = Qwen2MLP(config)
        self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

RWKV6QWEN2_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`RWKV6Qwen2Config`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
    RWKV6QWEN2_START_DOCSTRING,
)
class RWKV6Qwen2PreTrainedModel(PreTrainedModel):
    config_class = RWKV6Qwen2Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RWKV6Qwen2DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


RWKV6QWEN2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance, see our
            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""

@add_start_docstrings(
    "The bare RWKV6Qwen2 Model outputting raw hidden-states without any specific head on top.",
    RWKV6QWEN2_START_DOCSTRING,
)
class RWKV6Qwen2Model(RWKV6Qwen2PreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]

    Args:
        config: RWKV6Qwen2Config
    """

    def __init__(self, config: RWKV6Qwen2Config):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [RWKV6Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        #self.rotary_emb = Qwen2RotaryEmbedding(config=config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # kept for BC (non `Cache` `past_key_values` inputs)
        #return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, RWKV6State):
            #return_legacy_cache = True
            past_key_values = RWKV6State()
            # if past_key_values is None:
            #     past_key_values = DynamicCache()
            # else:
            #     past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            #     logger.warning_once(
            #         "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
            #         "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
            #         "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
            #     )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # if cache_position is None:
        #     past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        #     cache_position = torch.arange(
        #         past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
        #     )
        # if position_ids is None:
        #     position_ids = cache_position.unsqueeze(0)

        # causal_mask = self._update_causal_mask(
        #     attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        # )

        causal_mask = None

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = None #self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        #if return_legacy_cache:
        #    next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class RWKV6Qwen2ForCausalLM(RWKV6Qwen2PreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = RWKV6Qwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
        **loss_kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            num_logits_to_keep (`int`, *optional*):
                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, RWKV6Qwen2ForCausalLM

        >>> model = RWKV6Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[Cache] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        """
        Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or
        slicing inputs given the existing cache.

        See the forward pass in the model documentation for expected arguments (different models might have different
        requirements for e.g. `past_key_values`). This function should work as is for most LLMs.
        """

        # 1. Handle BC:
        model_inputs = {}
        # - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
        if self._supports_cache_class:
            model_inputs["cache_position"] = cache_position
        # - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
        #   function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
        #   (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
        elif cache_position is None:
            past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
            cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)

        # 2. Generic cache-dependent input preparation
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case
        if past_key_values is not None:
            model_inputs["past_key_values"] = past_key_values
            if inputs_embeds is not None or cache_position[-1] >= input_ids.shape[1]:  # Exception 1 or Exception 3
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        # 3. Prepare base model inputs
        input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if not self.config.is_encoder_decoder:
            if inputs_embeds is not None and cache_position[0] == 0:
                model_inputs[input_ids_key] = None
                model_inputs["inputs_embeds"] = inputs_embeds
            else:
                # `clone` calls in this function ensure a consistent stride. See #32227
                model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
                model_inputs["inputs_embeds"] = None
        else:
            model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)

        # 4. Create missing `position_ids` on the fly
        if (
            attention_mask is not None
            and kwargs.get("position_ids") is None
            and "position_ids" in set(inspect.signature(self.forward).parameters.keys())
        ):
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            kwargs["position_ids"] = position_ids  # placed in kwargs for further processing (see below)

        # 5. Slice model inputs if it's an input that should have the same length as `input_ids`
        for model_input_name in ["position_ids", "token_type_ids"]:
            model_input = kwargs.get(model_input_name)
            if model_input is not None:
                if past_key_values:
                    model_input = model_input[:, -input_ids.shape[1] :]
                    model_input = model_input.clone(memory_format=torch.contiguous_format)
                model_inputs[model_input_name] = model_input

        # 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass)
        if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
            if model_inputs["inputs_embeds"] is not None:
                batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
                device = model_inputs["inputs_embeds"].device
            else:
                batch_size, sequence_length = model_inputs[input_ids_key].shape
                device = model_inputs[input_ids_key].device

            # Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
            # the 4D causal mask exists, it should be present in the base model (XXXModel class).
            base_model = getattr(self, self.base_model_prefix, None)
            if base_model is None:
                causal_mask_creation_function = getattr(
                    self, "_prepare_4d_causal_attention_mask_with_cache_position", None
                )
            else:
                causal_mask_creation_function = getattr(
                    base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None
                )
            if causal_mask_creation_function is None:
                logger.warning_once(
                    f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method "
                    "defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
                    "writing code, see Llama for an example implementation. If you're a user, please report this "
                    "issue on GitHub."
                )
            else:
                attention_mask = causal_mask_creation_function(
                    attention_mask,
                    sequence_length=sequence_length,
                    target_length=past_key_values.get_max_cache_shape(),
                    dtype=self.dtype,
                    device=device,
                    cache_position=cache_position,
                    batch_size=batch_size,
                    config=self.config,
                    past_key_values=past_key_values,
                )
        if attention_mask is not None:
            model_inputs["attention_mask"] = attention_mask

        # 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
        for key, value in kwargs.items():
            if key not in model_inputs:
                model_inputs[key] = value

        # 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
        model_inputs.pop("labels", None)
        return model_inputs

@add_start_docstrings(
    """
    The RWKV6Qwen2 Model transformer with a sequence classification head on top (linear layer).

    [`RWKV6Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    RWKV6QWEN2_START_DOCSTRING,
)
class RWKV6Qwen2ForSequenceClassification(RWKV6Qwen2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = RWKV6Qwen2Model(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
    The RWKV6Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
    output) e.g. for Named-Entity-Recognition (NER) tasks.
    """,
    RWKV6QWEN2_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->RWKV6Qwen2, LLAMA->RWKV6QWEN2
class RWKV6Qwen2ForTokenClassification(RWKV6Qwen2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = RWKV6Qwen2Model(config)
        if getattr(config, "classifier_dropout", None) is not None:
            classifier_dropout = config.classifier_dropout
        elif getattr(config, "hidden_dropout", None) is not None:
            classifier_dropout = config.hidden_dropout
        else:
            classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.score = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        sequence_output = self.dropout(sequence_output)
        logits = self.score(sequence_output)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits, labels, self.config)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
The RWKV6Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    RWKV6QWEN2_START_DOCSTRING,
)
# Copied from transformers.models.mistral.modeling_mistral.MistralForQuestionAnswering with Mistral->RWKV6Qwen2, MISTRAL->RWKV6QWEN2
class RWKV6Qwen2ForQuestionAnswering(RWKV6Qwen2PreTrainedModel):
    base_model_prefix = "model"

    # Copied from models.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->RWKV6Qwen2
    def __init__(self, config):
        super().__init__(config)
        self.model = RWKV6Qwen2Model(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        loss = None
        if start_positions is not None and end_positions is not None:
            loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )