File size: 7,573 Bytes
4e60df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
SYSTEM = 'xtuner.utils.SYSTEM_TEMPLATE.alpaca'
accumulative_counts = 16
alpaca_en = dict(
    dataset=dict(
        data_files='/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json',
        path='json',
        type='datasets.load_dataset'),
    dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
    max_length=2048,
    pack_to_max_length=True,
    remove_unused_columns=True,
    shuffle_before_pack=True,
    template_map_fn=dict(
        template='xtuner.utils.PROMPT_TEMPLATE.gemma',
        type='xtuner.dataset.map_fns.template_map_fn_factory'),
    tokenizer=dict(
        padding_side='right',
        pretrained_model_name_or_path=
        '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
        trust_remote_code=True,
        type='transformers.AutoTokenizer.from_pretrained'),
    type='xtuner.dataset.process_hf_dataset',
    use_varlen_attn=False)
alpaca_en_path = '/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json'
batch_size = 1
betas = (
    0.9,
    0.999,
)
custom_hooks = [
    dict(
        tokenizer=dict(
            padding_side='right',
            pretrained_model_name_or_path=
            '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
            trust_remote_code=True,
            type='transformers.AutoTokenizer.from_pretrained'),
        type='xtuner.engine.hooks.DatasetInfoHook'),
    dict(
        evaluation_inputs=[
            'O que é um bode?',
            'Qual a capital da França?',
            'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
            'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
            'Resolva a equação de segundo grau x² - x - 30 = 0',
            'Escreva um código em python para calcular x^y usando divisão e conquista.',
        ],
        every_n_iters=500,
        prompt_template='xtuner.utils.PROMPT_TEMPLATE.gemma',
        system='xtuner.utils.SYSTEM_TEMPLATE.alpaca',
        tokenizer=dict(
            padding_side='right',
            pretrained_model_name_or_path=
            '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
            trust_remote_code=True,
            type='transformers.AutoTokenizer.from_pretrained'),
        type='xtuner.engine.hooks.EvaluateChatHook'),
]
dataloader_num_workers = 0
default_hooks = dict(
    checkpoint=dict(
        by_epoch=False,
        interval=500,
        max_keep_ckpts=2,
        type='mmengine.hooks.CheckpointHook'),
    logger=dict(
        interval=10,
        log_metric_by_epoch=False,
        type='mmengine.hooks.LoggerHook'),
    param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
    sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
    timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
    cudnn_benchmark=False,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 500
evaluation_inputs = [
    'O que é um bode?',
    'Qual a capital da França?',
    'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
    'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
    'Resolva a equação de segundo grau x² - x - 30 = 0',
    'Escreva um código em python para calcular x^y usando divisão e conquista.',
]
launcher = 'pytorch'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False)
lr = 2e-05
max_epochs = 1
max_length = 2048
max_norm = 1
model = dict(
    llm=dict(
        pretrained_model_name_or_path=
        '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
        trust_remote_code=True,
        type='transformers.AutoModelForCausalLM.from_pretrained'),
    type='xtuner.model.SupervisedFinetune',
    use_varlen_attn=False)
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
    optimizer=dict(
        betas=(
            0.9,
            0.999,
        ),
        lr=2e-05,
        type='torch.optim.AdamW',
        weight_decay=0),
    type='DeepSpeedOptimWrapper')
pack_to_max_length = True
param_scheduler = [
    dict(
        begin=0,
        by_epoch=True,
        convert_to_iter_based=True,
        end=0.03,
        start_factor=1e-05,
        type='mmengine.optim.LinearLR'),
    dict(
        begin=0.03,
        by_epoch=True,
        convert_to_iter_based=True,
        end=1,
        eta_min=0.0,
        type='mmengine.optim.CosineAnnealingLR'),
]
pretrained_model_name_or_path = '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.gemma'
randomness = dict(deterministic=False, seed=None)
resume = False
runner_type = 'FlexibleRunner'
save_steps = 500
save_total_limit = 2
strategy = dict(
    config=dict(
        bf16=dict(enabled=False),
        fp16=dict(enabled=True, initial_scale_power=16),
        gradient_accumulation_steps='auto',
        gradient_clipping='auto',
        train_micro_batch_size_per_gpu='auto',
        zero_allow_untested_optimizer=True,
        zero_force_ds_cpu_optimizer=False,
        zero_optimization=dict(overlap_comm=True, stage=2)),
    exclude_frozen_parameters=True,
    gradient_accumulation_steps=16,
    gradient_clipping=1,
    sequence_parallel_size=1,
    train_micro_batch_size_per_gpu=1,
    type='xtuner.engine.DeepSpeedStrategy')
tokenizer = dict(
    padding_side='right',
    pretrained_model_name_or_path=
    '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
    trust_remote_code=True,
    type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(
    batch_size=1,
    collate_fn=dict(
        type='xtuner.dataset.collate_fns.default_collate_fn',
        use_varlen_attn=False),
    dataset=dict(
        dataset=dict(
            data_files=
            '/petrobr/parceirosbr/radiar/llama_test/ultracabrita3.json',
            path='json',
            type='datasets.load_dataset'),
        dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
        max_length=2048,
        pack_to_max_length=True,
        remove_unused_columns=True,
        shuffle_before_pack=True,
        template_map_fn=dict(
            template='xtuner.utils.PROMPT_TEMPLATE.gemma',
            type='xtuner.dataset.map_fns.template_map_fn_factory'),
        tokenizer=dict(
            padding_side='right',
            pretrained_model_name_or_path=
            '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--google--gemma-2b-it/snapshots/060189a16d5d2713425599b533a9e8ece8f5cca6',
            trust_remote_code=True,
            type='transformers.AutoTokenizer.from_pretrained'),
        type='xtuner.dataset.process_hf_dataset',
        use_varlen_attn=False),
    num_workers=0,
    sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
use_varlen_attn = False
visualizer = None
warmup_ratio = 0.03
weight_decay = 0
work_dir = './work_dirs/gemma_2b_it_full_ultracabrita'