File size: 3,558 Bytes
89ca3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4146fdf
89ca3a1
4146fdf
 
89ca3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6795d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ca3a1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "machine_shape": "hm",
      "gpuType": "T4",
      "provenance": []
    },
    "accelerator": "GPU",
    "kaggle": {
      "accelerator": "gpu"
    },
    "language_info": {
      "name": "python"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "## Custom Notebook by VB on HF\n",
        "\n",
        "VB made this notebook and Hugging Face gladly served it! yayy!\n",
        "\n",
        "You can really just do things"
      ],
      "metadata": {
        "id": "LJZNGWgrcYeq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -U transformers"
      ],
      "metadata": {
        "id": "Qghvxbi8cOVr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Model page: https://huggingface.co/reach-vb/Qwen3-0.6B\n",
        "\n",
        "⚠️ If the generated code snippets do not work, please open an issue on either the [model repo](https://huggingface.co/reach-vb/Qwen3-0.6B)\n",
        "\t\t\tand/or on [huggingface.js](https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries-snippets.ts) 🙏"
      ],
      "metadata": {
        "id": "a6SL-cvKcOVr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Use a pipeline as a high-level helper\n",
        "from transformers import pipeline\n",
        "import torch\n",
        "\n",
        "pipe = pipeline(\"text-generation\", model=\"reach-vb/Qwen3-0.6B\", torch_dtype=torch.bfloat16)\n",
        "messages = [\n",
        "    {\"role\": \"user\", \"content\": \"Wo bist du, alter?\"},\n",
        "]\n",
        "pipe(messages, max_new_tokens=512)"
      ],
      "metadata": {
        "id": "muWc9vyhcOVr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Load model directly\n",
        "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
        "\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"reach-vb/Qwen3-0.6B\")\n",
        "model = AutoModelForCausalLM.from_pretrained(\"reach-vb/Qwen3-0.6B\")"
      ],
      "metadata": {
        "id": "1dy_oF6OcOVs"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Too big to run in Colab?\n",
        "\n",
        "Try using Inference Providers for serverless usage of these models"
      ],
      "metadata": {
        "id": "-r9Z_OnzRSFn"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "from huggingface_hub import InferenceClient\n",
        "\n",
        "client = InferenceClient(\n",
        "    provider=\"auto\",\n",
        "    api_key=os.environ[\"HF_TOKEN\"],\n",
        ")\n",
        "\n",
        "completion = client.chat.completions.create(\n",
        "    model=\"Qwen/Qwen3-4B\",\n",
        "    messages=[\n",
        "        {\n",
        "            \"role\": \"user\",\n",
        "            \"content\": \"What is the capital of France?\"\n",
        "        }\n",
        "    ],\n",
        ")\n",
        "\n",
        "print(completion.choices[0].message)"
      ],
      "metadata": {
        "id": "ZtpuYegeRYPg"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}