bert-indo-base-stance-cls

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0156
  • Accuracy: 0.6892
  • Precision: 0.6848
  • Recall: 0.6892
  • F1: 0.6859
  • Against: {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216}
  • For: {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Against For
No log 1.0 137 0.6423 0.6581 0.6894 0.6581 0.5917 {'precision': 0.7543859649122807, 'recall': 0.19907407407407407, 'f1-score': 0.31501831501831506, 'support': 216} {'precision': 0.6469387755102041, 'recall': 0.9577039274924471, 'f1-score': 0.7722289890377587, 'support': 331}
No log 2.0 274 0.6146 0.6600 0.6691 0.6600 0.6628 {'precision': 0.5614754098360656, 'recall': 0.6342592592592593, 'f1-score': 0.5956521739130436, 'support': 216} {'precision': 0.7392739273927392, 'recall': 0.676737160120846, 'f1-score': 0.7066246056782334, 'support': 331}
No log 3.0 411 0.7572 0.6545 0.6734 0.6545 0.6583 {'precision': 0.550561797752809, 'recall': 0.6805555555555556, 'f1-score': 0.608695652173913, 'support': 216} {'precision': 0.7535714285714286, 'recall': 0.6374622356495468, 'f1-score': 0.6906710310965631, 'support': 331}
0.4855 4.0 548 0.7405 0.6892 0.6842 0.6892 0.6851 {'precision': 0.6210526315789474, 'recall': 0.5462962962962963, 'f1-score': 0.5812807881773399, 'support': 216} {'precision': 0.7254901960784313, 'recall': 0.7824773413897281, 'f1-score': 0.7529069767441859, 'support': 331}
0.4855 5.0 685 1.1222 0.6856 0.6828 0.6856 0.6839 {'precision': 0.6078431372549019, 'recall': 0.5740740740740741, 'f1-score': 0.5904761904761905, 'support': 216} {'precision': 0.7317784256559767, 'recall': 0.7583081570996979, 'f1-score': 0.7448071216617211, 'support': 331}
0.4855 6.0 822 1.4960 0.6892 0.6830 0.6892 0.6827 {'precision': 0.6292134831460674, 'recall': 0.5185185185185185, 'f1-score': 0.5685279187817258, 'support': 216} {'precision': 0.7181571815718157, 'recall': 0.8006042296072508, 'f1-score': 0.7571428571428572, 'support': 331}
0.4855 7.0 959 1.6304 0.6801 0.6886 0.6801 0.6827 {'precision': 0.5843621399176955, 'recall': 0.6574074074074074, 'f1-score': 0.6187363834422658, 'support': 216} {'precision': 0.756578947368421, 'recall': 0.6948640483383686, 'f1-score': 0.7244094488188976, 'support': 331}
0.1029 8.0 1096 1.8381 0.6673 0.6727 0.6673 0.6693 {'precision': 0.5726495726495726, 'recall': 0.6203703703703703, 'f1-score': 0.5955555555555555, 'support': 216} {'precision': 0.7380191693290735, 'recall': 0.6978851963746223, 'f1-score': 0.717391304347826, 'support': 331}
0.1029 9.0 1233 1.9474 0.6929 0.6876 0.6929 0.6881 {'precision': 0.6290322580645161, 'recall': 0.5416666666666666, 'f1-score': 0.582089552238806, 'support': 216} {'precision': 0.7257617728531855, 'recall': 0.7915407854984894, 'f1-score': 0.7572254335260115, 'support': 331}
0.1029 10.0 1370 2.0156 0.6892 0.6848 0.6892 0.6859 {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331}

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support