File size: 4,454 Bytes
ac954ad 5c60112 ac954ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit_base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dit_base
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the davanstrien/leicester_loaded_annotations dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4527
- Accuracy: 0.8190
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.89 | 6 | 1.7452 | 0.4095 |
| 1.8958 | 1.89 | 12 | 1.6185 | 0.4286 |
| 1.8958 | 2.89 | 18 | 1.4731 | 0.4857 |
| 1.8466 | 3.89 | 24 | 1.3459 | 0.5524 |
| 1.445 | 4.89 | 30 | 1.1766 | 0.5810 |
| 1.445 | 5.89 | 36 | 1.0902 | 0.6381 |
| 1.2077 | 6.89 | 42 | 0.9331 | 0.6762 |
| 1.2077 | 7.89 | 48 | 0.8431 | 0.6762 |
| 1.0254 | 8.89 | 54 | 0.8657 | 0.6857 |
| 0.8275 | 9.89 | 60 | 0.6801 | 0.7429 |
| 0.8275 | 10.89 | 66 | 0.6699 | 0.7810 |
| 0.8063 | 11.89 | 72 | 0.6296 | 0.7524 |
| 0.8063 | 12.89 | 78 | 0.5498 | 0.7905 |
| 0.7127 | 13.89 | 84 | 0.4974 | 0.8381 |
| 0.6356 | 14.89 | 90 | 0.6715 | 0.7619 |
| 0.6356 | 15.89 | 96 | 0.4602 | 0.8095 |
| 0.6438 | 16.89 | 102 | 0.4886 | 0.8095 |
| 0.6438 | 17.89 | 108 | 0.4332 | 0.8 |
| 0.5329 | 18.89 | 114 | 0.4197 | 0.8095 |
| 0.4932 | 19.89 | 120 | 0.4168 | 0.8190 |
| 0.4932 | 20.89 | 126 | 0.4691 | 0.8 |
| 0.4861 | 21.89 | 132 | 0.4263 | 0.8476 |
| 0.4861 | 22.89 | 138 | 0.4464 | 0.8190 |
| 0.4935 | 23.89 | 144 | 0.4857 | 0.7905 |
| 0.433 | 24.89 | 150 | 0.4873 | 0.7810 |
| 0.433 | 25.89 | 156 | 0.4641 | 0.8095 |
| 0.4289 | 26.89 | 162 | 0.5316 | 0.8 |
| 0.4289 | 27.89 | 168 | 0.3389 | 0.8571 |
| 0.4204 | 28.89 | 174 | 0.4272 | 0.8 |
| 0.3668 | 29.89 | 180 | 0.3493 | 0.8667 |
| 0.3668 | 30.89 | 186 | 0.3861 | 0.8571 |
| 0.4101 | 31.89 | 192 | 0.4216 | 0.8381 |
| 0.4101 | 32.89 | 198 | 0.4258 | 0.8190 |
| 0.3614 | 33.89 | 204 | 0.4409 | 0.8571 |
| 0.3267 | 34.89 | 210 | 0.4475 | 0.8190 |
| 0.3267 | 35.89 | 216 | 0.4316 | 0.8190 |
| 0.3423 | 36.89 | 222 | 0.4095 | 0.8381 |
| 0.3423 | 37.89 | 228 | 0.4671 | 0.8286 |
| 0.3325 | 38.89 | 234 | 0.3994 | 0.8286 |
| 0.3326 | 39.89 | 240 | 0.5004 | 0.8190 |
| 0.3326 | 40.89 | 246 | 0.4103 | 0.8381 |
| 0.2964 | 41.89 | 252 | 0.4469 | 0.8286 |
| 0.2964 | 42.89 | 258 | 0.4774 | 0.8286 |
| 0.3435 | 43.89 | 264 | 0.3843 | 0.8381 |
| 0.3146 | 44.89 | 270 | 0.3710 | 0.8667 |
| 0.3146 | 45.89 | 276 | 0.3392 | 0.8667 |
| 0.3168 | 46.89 | 282 | 0.3597 | 0.8667 |
| 0.3168 | 47.89 | 288 | 0.4143 | 0.8381 |
| 0.3081 | 48.89 | 294 | 0.3579 | 0.8571 |
| 0.3103 | 49.89 | 300 | 0.4527 | 0.8190 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.1
|