File size: 3,073 Bytes
120cc82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-summarize-sum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-summarize-sum
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3984
- Rouge1: 0.5736
- Rouge2: 0.3783
- Rougel: 0.4855
- Rougelsum: 0.4844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 13.8551 | 0.16 | 100 | 5.4672 | 0.2389 | 0.0546 | 0.2119 | 0.2110 |
| 1.0762 | 0.33 | 200 | 0.5982 | 0.3774 | 0.2199 | 0.3493 | 0.3470 |
| 0.8077 | 0.49 | 300 | 0.4999 | 0.4929 | 0.3195 | 0.4349 | 0.4312 |
| 0.7772 | 0.65 | 400 | 0.4652 | 0.4715 | 0.3296 | 0.4431 | 0.4409 |
| 0.7771 | 0.82 | 500 | 0.4402 | 0.4881 | 0.3356 | 0.4433 | 0.4412 |
| 0.713 | 0.98 | 600 | 0.4500 | 0.4990 | 0.3291 | 0.4550 | 0.4525 |
| 0.65 | 1.15 | 700 | 0.4335 | 0.5522 | 0.3633 | 0.4930 | 0.4909 |
| 0.7035 | 1.31 | 800 | 0.4278 | 0.5227 | 0.3470 | 0.4781 | 0.4772 |
| 0.6818 | 1.47 | 900 | 0.4202 | 0.5325 | 0.3585 | 0.4759 | 0.4744 |
| 0.6643 | 1.64 | 1000 | 0.4113 | 0.5326 | 0.3486 | 0.4678 | 0.4641 |
| 0.6007 | 1.8 | 1100 | 0.4122 | 0.5152 | 0.3260 | 0.4572 | 0.4547 |
| 0.5866 | 1.96 | 1200 | 0.4158 | 0.5538 | 0.3680 | 0.4910 | 0.4903 |
| 0.5563 | 2.13 | 1300 | 0.4051 | 0.5433 | 0.3371 | 0.4685 | 0.4672 |
| 0.5727 | 2.29 | 1400 | 0.4089 | 0.5447 | 0.3619 | 0.4711 | 0.4695 |
| 0.5859 | 2.45 | 1500 | 0.4033 | 0.5464 | 0.3411 | 0.4688 | 0.4662 |
| 0.5783 | 2.62 | 1600 | 0.3997 | 0.5667 | 0.3595 | 0.4825 | 0.4787 |
| 0.5673 | 2.78 | 1700 | 0.3992 | 0.5759 | 0.3882 | 0.4911 | 0.4891 |
| 0.57 | 2.95 | 1800 | 0.3984 | 0.5736 | 0.3783 | 0.4855 | 0.4844 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|