File size: 3,073 Bytes
120cc82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-summarize-sum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-summarize-sum

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3984
- Rouge1: 0.5736
- Rouge2: 0.3783
- Rougel: 0.4855
- Rougelsum: 0.4844

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 13.8551       | 0.16  | 100  | 5.4672          | 0.2389 | 0.0546 | 0.2119 | 0.2110    |
| 1.0762        | 0.33  | 200  | 0.5982          | 0.3774 | 0.2199 | 0.3493 | 0.3470    |
| 0.8077        | 0.49  | 300  | 0.4999          | 0.4929 | 0.3195 | 0.4349 | 0.4312    |
| 0.7772        | 0.65  | 400  | 0.4652          | 0.4715 | 0.3296 | 0.4431 | 0.4409    |
| 0.7771        | 0.82  | 500  | 0.4402          | 0.4881 | 0.3356 | 0.4433 | 0.4412    |
| 0.713         | 0.98  | 600  | 0.4500          | 0.4990 | 0.3291 | 0.4550 | 0.4525    |
| 0.65          | 1.15  | 700  | 0.4335          | 0.5522 | 0.3633 | 0.4930 | 0.4909    |
| 0.7035        | 1.31  | 800  | 0.4278          | 0.5227 | 0.3470 | 0.4781 | 0.4772    |
| 0.6818        | 1.47  | 900  | 0.4202          | 0.5325 | 0.3585 | 0.4759 | 0.4744    |
| 0.6643        | 1.64  | 1000 | 0.4113          | 0.5326 | 0.3486 | 0.4678 | 0.4641    |
| 0.6007        | 1.8   | 1100 | 0.4122          | 0.5152 | 0.3260 | 0.4572 | 0.4547    |
| 0.5866        | 1.96  | 1200 | 0.4158          | 0.5538 | 0.3680 | 0.4910 | 0.4903    |
| 0.5563        | 2.13  | 1300 | 0.4051          | 0.5433 | 0.3371 | 0.4685 | 0.4672    |
| 0.5727        | 2.29  | 1400 | 0.4089          | 0.5447 | 0.3619 | 0.4711 | 0.4695    |
| 0.5859        | 2.45  | 1500 | 0.4033          | 0.5464 | 0.3411 | 0.4688 | 0.4662    |
| 0.5783        | 2.62  | 1600 | 0.3997          | 0.5667 | 0.3595 | 0.4825 | 0.4787    |
| 0.5673        | 2.78  | 1700 | 0.3992          | 0.5759 | 0.3882 | 0.4911 | 0.4891    |
| 0.57          | 2.95  | 1800 | 0.3984          | 0.5736 | 0.3783 | 0.4855 | 0.4844    |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2