raquelclemente commited on
Commit
120cc82
1 Parent(s): 49395d1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: mt5-summarize-sum
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mt5-summarize-sum
16
+
17
+ This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3984
20
+ - Rouge1: 0.5736
21
+ - Rouge2: 0.3783
22
+ - Rougel: 0.4855
23
+ - Rougelsum: 0.4844
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0005
43
+ - train_batch_size: 2
44
+ - eval_batch_size: 2
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 16
47
+ - total_train_batch_size: 32
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 90
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
57
+ | 13.8551 | 0.16 | 100 | 5.4672 | 0.2389 | 0.0546 | 0.2119 | 0.2110 |
58
+ | 1.0762 | 0.33 | 200 | 0.5982 | 0.3774 | 0.2199 | 0.3493 | 0.3470 |
59
+ | 0.8077 | 0.49 | 300 | 0.4999 | 0.4929 | 0.3195 | 0.4349 | 0.4312 |
60
+ | 0.7772 | 0.65 | 400 | 0.4652 | 0.4715 | 0.3296 | 0.4431 | 0.4409 |
61
+ | 0.7771 | 0.82 | 500 | 0.4402 | 0.4881 | 0.3356 | 0.4433 | 0.4412 |
62
+ | 0.713 | 0.98 | 600 | 0.4500 | 0.4990 | 0.3291 | 0.4550 | 0.4525 |
63
+ | 0.65 | 1.15 | 700 | 0.4335 | 0.5522 | 0.3633 | 0.4930 | 0.4909 |
64
+ | 0.7035 | 1.31 | 800 | 0.4278 | 0.5227 | 0.3470 | 0.4781 | 0.4772 |
65
+ | 0.6818 | 1.47 | 900 | 0.4202 | 0.5325 | 0.3585 | 0.4759 | 0.4744 |
66
+ | 0.6643 | 1.64 | 1000 | 0.4113 | 0.5326 | 0.3486 | 0.4678 | 0.4641 |
67
+ | 0.6007 | 1.8 | 1100 | 0.4122 | 0.5152 | 0.3260 | 0.4572 | 0.4547 |
68
+ | 0.5866 | 1.96 | 1200 | 0.4158 | 0.5538 | 0.3680 | 0.4910 | 0.4903 |
69
+ | 0.5563 | 2.13 | 1300 | 0.4051 | 0.5433 | 0.3371 | 0.4685 | 0.4672 |
70
+ | 0.5727 | 2.29 | 1400 | 0.4089 | 0.5447 | 0.3619 | 0.4711 | 0.4695 |
71
+ | 0.5859 | 2.45 | 1500 | 0.4033 | 0.5464 | 0.3411 | 0.4688 | 0.4662 |
72
+ | 0.5783 | 2.62 | 1600 | 0.3997 | 0.5667 | 0.3595 | 0.4825 | 0.4787 |
73
+ | 0.5673 | 2.78 | 1700 | 0.3992 | 0.5759 | 0.3882 | 0.4911 | 0.4891 |
74
+ | 0.57 | 2.95 | 1800 | 0.3984 | 0.5736 | 0.3783 | 0.4855 | 0.4844 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.27.4
80
+ - Pytorch 1.13.0
81
+ - Datasets 2.1.0
82
+ - Tokenizers 0.13.2