raquelclemente
commited on
Commit
•
120cc82
1
Parent(s):
49395d1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: mt5-summarize-sum
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mt5-summarize-sum
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3984
|
20 |
+
- Rouge1: 0.5736
|
21 |
+
- Rouge2: 0.3783
|
22 |
+
- Rougel: 0.4855
|
23 |
+
- Rougelsum: 0.4844
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0005
|
43 |
+
- train_batch_size: 2
|
44 |
+
- eval_batch_size: 2
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 16
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 90
|
51 |
+
- num_epochs: 3
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
57 |
+
| 13.8551 | 0.16 | 100 | 5.4672 | 0.2389 | 0.0546 | 0.2119 | 0.2110 |
|
58 |
+
| 1.0762 | 0.33 | 200 | 0.5982 | 0.3774 | 0.2199 | 0.3493 | 0.3470 |
|
59 |
+
| 0.8077 | 0.49 | 300 | 0.4999 | 0.4929 | 0.3195 | 0.4349 | 0.4312 |
|
60 |
+
| 0.7772 | 0.65 | 400 | 0.4652 | 0.4715 | 0.3296 | 0.4431 | 0.4409 |
|
61 |
+
| 0.7771 | 0.82 | 500 | 0.4402 | 0.4881 | 0.3356 | 0.4433 | 0.4412 |
|
62 |
+
| 0.713 | 0.98 | 600 | 0.4500 | 0.4990 | 0.3291 | 0.4550 | 0.4525 |
|
63 |
+
| 0.65 | 1.15 | 700 | 0.4335 | 0.5522 | 0.3633 | 0.4930 | 0.4909 |
|
64 |
+
| 0.7035 | 1.31 | 800 | 0.4278 | 0.5227 | 0.3470 | 0.4781 | 0.4772 |
|
65 |
+
| 0.6818 | 1.47 | 900 | 0.4202 | 0.5325 | 0.3585 | 0.4759 | 0.4744 |
|
66 |
+
| 0.6643 | 1.64 | 1000 | 0.4113 | 0.5326 | 0.3486 | 0.4678 | 0.4641 |
|
67 |
+
| 0.6007 | 1.8 | 1100 | 0.4122 | 0.5152 | 0.3260 | 0.4572 | 0.4547 |
|
68 |
+
| 0.5866 | 1.96 | 1200 | 0.4158 | 0.5538 | 0.3680 | 0.4910 | 0.4903 |
|
69 |
+
| 0.5563 | 2.13 | 1300 | 0.4051 | 0.5433 | 0.3371 | 0.4685 | 0.4672 |
|
70 |
+
| 0.5727 | 2.29 | 1400 | 0.4089 | 0.5447 | 0.3619 | 0.4711 | 0.4695 |
|
71 |
+
| 0.5859 | 2.45 | 1500 | 0.4033 | 0.5464 | 0.3411 | 0.4688 | 0.4662 |
|
72 |
+
| 0.5783 | 2.62 | 1600 | 0.3997 | 0.5667 | 0.3595 | 0.4825 | 0.4787 |
|
73 |
+
| 0.5673 | 2.78 | 1700 | 0.3992 | 0.5759 | 0.3882 | 0.4911 | 0.4891 |
|
74 |
+
| 0.57 | 2.95 | 1800 | 0.3984 | 0.5736 | 0.3783 | 0.4855 | 0.4844 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.27.4
|
80 |
+
- Pytorch 1.13.0
|
81 |
+
- Datasets 2.1.0
|
82 |
+
- Tokenizers 0.13.2
|