scotus-v10

This model is a fine-tuned version of nlpaueb/legal-bert-small-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7971
  • Accuracy: 0.8842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.67 1.0 1219 1.3781 0.5718
1.1539 2.0 2438 0.9619 0.7077
0.6736 3.0 3657 0.7837 0.7668
0.4265 4.0 4876 0.5882 0.8309
0.2477 5.0 6095 0.5624 0.8446
0.1636 6.0 7314 0.5701 0.8542
0.0938 7.0 8533 0.6322 0.8603
0.0523 8.0 9752 0.6717 0.8606
0.0397 9.0 10971 0.6626 0.8738
0.0236 10.0 12190 0.6729 0.8811
0.0129 11.0 13409 0.7164 0.876
0.0098 12.0 14628 0.8041 0.8723
0.0066 13.0 15847 0.7792 0.8794
0.0055 14.0 17066 0.7704 0.8792
0.0032 15.0 18285 0.8369 0.8768
0.0023 16.0 19504 0.8685 0.8737
0.0012 17.0 20723 0.7631 0.888
0.0026 18.0 21942 0.8220 0.8808
0.0011 19.0 23161 0.7897 0.8845
0.0003 20.0 24380 0.7971 0.8842

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for raminass/scotus-v10

Finetuned
(4)
this model
Finetunes
24 models

Space using raminass/scotus-v10 1