File size: 4,132 Bytes
ce64551 d73c5d8 ce64551 58c81e4 ce64551 7888245 c9da6fd 2de07e1 ce64551 d73c5d8 ce64551 d956b7c ce64551 d73c5d8 ce64551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
- rajistics/indian_food_images
metrics:
- accuracy
widget:
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg
example_title: Fried Rice
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg
example_title: Paani Puri
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg
example_title: Chapathi
model-index:
- name: finetuned-indian-food
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: indian_food_images
type: imagefolder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9521785334750266
- task:
type: image-classification
name: Image Classification
dataset:
name: rajistics/indian_food_images
type: rajistics/indian_food_images
config: rajistics--indian_food_images
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8257173219978746
verified: true
- name: Precision Macro
type: precision
value: 0.8391547623590003
verified: true
- name: Precision Micro
type: precision
value: 0.8257173219978746
verified: true
- name: Precision Weighted
type: precision
value: 0.8437849242516663
verified: true
- name: Recall Macro
type: recall
value: 0.8199909093335551
verified: true
- name: Recall Micro
type: recall
value: 0.8257173219978746
verified: true
- name: Recall Weighted
type: recall
value: 0.8257173219978746
verified: true
- name: F1 Macro
type: f1
value: 0.8207881196755944
verified: true
- name: F1 Micro
type: f1
value: 0.8257173219978746
verified: true
- name: F1 Weighted
type: f1
value: 0.8256340007731109
verified: true
- name: loss
type: loss
value: 0.6241679787635803
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-indian-food
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2139
- Accuracy: 0.9522
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0846 | 0.3 | 100 | 0.9561 | 0.8555 |
| 0.7894 | 0.6 | 200 | 0.5871 | 0.8927 |
| 0.6233 | 0.9 | 300 | 0.4447 | 0.9107 |
| 0.3619 | 1.2 | 400 | 0.4355 | 0.8937 |
| 0.34 | 1.5 | 500 | 0.3712 | 0.9118 |
| 0.3413 | 1.8 | 600 | 0.4088 | 0.8916 |
| 0.3619 | 2.1 | 700 | 0.3741 | 0.9044 |
| 0.2135 | 2.4 | 800 | 0.3286 | 0.9160 |
| 0.2166 | 2.7 | 900 | 0.2758 | 0.9416 |
| 0.1557 | 3.0 | 1000 | 0.2679 | 0.9330 |
| 0.1115 | 3.3 | 1100 | 0.2529 | 0.9362 |
| 0.1571 | 3.6 | 1200 | 0.2360 | 0.9469 |
| 0.1079 | 3.9 | 1300 | 0.2139 | 0.9522 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|