File size: 1,868 Bytes
8c9bed0
 
 
 
 
 
 
 
 
 
 
 
6ef0ed4
da7919b
6ef0ed4
8c9bed0
 
 
6ef0ed4
8c9bed0
 
 
6ef0ed4
8c9bed0
 
 
 
 
 
 
 
 
 
 
6ef0ed4
 
8c9bed0
 
 
 
 
 
c43acda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: bert-base-uncased-finetuned-glue-sst2
  results: []
---

# bert-base-uncased-finetuned-glue-sst2

Use for **sentiment analysis**.

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [glue sst2 dataset](https://huggingface.co/datasets/glue/viewer/sst2). The model achieves `91.39%` accuracy on the validation dataset.

## Model description

[bert-base-uncased](https://huggingface.co/bert-base-uncased) is a pretrained English language model. `bert-base-uncased-finetuned-glue-sst2` adds a 2-class classification head for predicting `positive` and `negative` sentiment.

## Training and evaluation data

The model has been trained on 10K training samples, even though the [glue sst2 dataset](https://huggingface.co/datasets/glue/viewer/sst2) contains 67.3K samples. This was done to decrease training time.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 3750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

- Accuracy (training): `94.33%`
- Accuracy (validation): `91.39%`

### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0