File size: 1,760 Bytes
0dc4ee8
 
 
 
e55a4b3
 
 
 
 
 
 
 
af68319
 
 
 
 
 
 
 
 
110095b
 
 
 
 
 
 
 
 
 
 
af68319
 
 
 
 
 
110095b
 
 
af68319
110095b
 
af68319
110095b
 
 
 
 
 
af68319
110095b
 
af68319
110095b
af68319
 
 
 
 
 
 
 
ae4a4fa
 
af68319
 
 
 
 
 
 
 
 
 
 
 
110095b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-7B-Chat/raw/main/LICENSE
datasets:
- yys/OpenOrca-Chinese
language:
- zh
- en
pipeline_tag: text-generation
tags:
- CoT
---
<style>
  @font-face {
  font-family: Zpix;
  src: url(https://zpix.now.sh/zpix.woff2?v2021-03-21);
}
  * {
    font-family:Zpix;
  }
  #main-ame-back {
    font-family:Zpix;
    color: #fd96fd !important;
    
      padding: 15px;
  }
  a {
    color:#fd87c2 !important
  }
  #main-ame-back h1{
    color:#8e45f5 !important;
  }
</style>
<img src="https://pbs.twimg.com/media/GKJ6VOdbIAAo2yr?format=png&name=900x900"></img>



<div id="main-ame-back">

<div style="font-size:40px;color: #ebb4dd;font-weight:bolder;">ジェルばんは~</div>

  <br>
<h1>🧬Rain-7B-v0.1</h1>


Rain-7B-v0.1 is a experimental model finetuned on <a href="https://huggingface.co/Qwen/Qwen1.5-7B-Chat">Qwen1.5-7B-Chat</a> with thousands of <b>chain of thought</b> conversations.

<h1>🧬Evaluation</h1>
  
|Model name|Score|
|---|---|
|Qwen1.5-7B-Chat|55.8|
|Rain-7B-v0.1|58.1|

<h1>🧬Usage</h1>

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "raincandy-u/Rain-7B-v0.1"
messages = [{"role": "user", "content": "What is chain of thoughts?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

</div>