File size: 1,776 Bytes
17815b0 91d53b2 f51cfeb 91d53b2 f51cfeb 91d53b2 f51cfeb 17815b0 91d53b2 b31d237 22a4631 91d53b2 cb395b2 91d53b2 382afa7 91d53b2 382afa7 91d53b2 9d94298 7971361 1e4ab54 7971361 1e4ab54 7971361 1e4ab54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language:
- ru
license:
- apache-2.0
tags:
- causal-lm
- text-generation
datasets: radm/tathagata
inference: false
widget:
- text: Как обрести просветление?<s>
example_title: Википедия
---
# RuGPT3Medium-tathagata
## Model description
This is the model for text generation for Russian based on [rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2).
## Intended uses & limitations
Тhis model was trained and run to generate text on RTX 3080
#### How to use
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
DEVICE = torch.device("cuda:0")
model_name_or_path = "radm/rugpt3medium-tathagata"
tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/rugpt3medium_based_on_gpt2")
model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)
text = "В чем смысл жизни?\n"
input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE)
model.eval()
with torch.no_grad():
out = model.generate(input_ids,
do_sample=True,
num_beams=4,
temperature=1.1,
top_p=0.9,
top_k=50,
max_length=250,
min_length=50,
early_stopping=True,
no_repeat_ngram_size=2
)
generated_text = list(map(tokenizer.decode, out))[0]
print()
print(generated_text)
```
## Dataset
Dataset based on summaries of major Buddhist, Hindu and Advaita texts such as:
- Diamond Sutra
- Lankavatara Sutra
- Sri Nisargadatta Maharaj quotes
- Quotes from the Bhagavad Gita
Dataset link: [tathagata](https://huggingface.co/datasets/radm/tathagata)
|