Edit model card

XLSR-Quantized: Optimized for Mobile Deployment

Upscale images in real time

XLSR is designed for lightweight real-time upscaling of images.

This model is an implementation of XLSR-Quantized found here.

This repository provides scripts to run XLSR-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Super resolution
  • Model Stats:
    • Model checkpoint: xlsr_3x_checkpoint
    • Input resolution: 128x128
    • Number of parameters: 22.0K
    • Model size: 39.0 KB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
XLSR-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 1.076 ms 0 - 1 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.652 ms 0 - 3 MB INT8 NPU XLSR-Quantized.so
XLSR-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 0.678 ms 0 - 1 MB INT8 NPU XLSR-Quantized.onnx
XLSR-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.878 ms 0 - 22 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.454 ms 0 - 15 MB INT8 NPU XLSR-Quantized.so
XLSR-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.499 ms 0 - 24 MB INT8 NPU XLSR-Quantized.onnx
XLSR-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 2.437 ms 0 - 16 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 1.076 ms 0 - 7 MB INT8 NPU Use Export Script
XLSR-Quantized RB5 (Proxy) QCS8250 Proxy TFLITE 16.048 ms 4 - 28 MB INT8 GPU XLSR-Quantized.tflite
XLSR-Quantized QCS8550 (Proxy) QCS8550 Proxy TFLITE 1.06 ms 0 - 12 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized QCS8550 (Proxy) QCS8550 Proxy QNN 0.426 ms 0 - 2 MB INT8 NPU Use Export Script
XLSR-Quantized SA8255 (Proxy) SA8255P Proxy TFLITE 1.054 ms 0 - 3 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized SA8255 (Proxy) SA8255P Proxy QNN 0.429 ms 0 - 2 MB INT8 NPU Use Export Script
XLSR-Quantized SA8775 (Proxy) SA8775P Proxy TFLITE 1.065 ms 0 - 1 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized SA8775 (Proxy) SA8775P Proxy QNN 0.433 ms 0 - 1 MB INT8 NPU Use Export Script
XLSR-Quantized SA8650 (Proxy) SA8650P Proxy TFLITE 1.077 ms 2 - 14 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized SA8650 (Proxy) SA8650P Proxy QNN 0.424 ms 0 - 1 MB INT8 NPU Use Export Script
XLSR-Quantized QCS8450 (Proxy) QCS8450 Proxy TFLITE 1.399 ms 0 - 23 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized QCS8450 (Proxy) QCS8450 Proxy QNN 0.716 ms 0 - 13 MB INT8 NPU Use Export Script
XLSR-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.854 ms 0 - 16 MB INT8 NPU XLSR-Quantized.tflite
XLSR-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.404 ms 0 - 10 MB INT8 NPU Use Export Script
XLSR-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.381 ms 0 - 16 MB INT8 NPU XLSR-Quantized.onnx
XLSR-Quantized Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.536 ms 0 - 0 MB INT8 NPU Use Export Script
XLSR-Quantized Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.794 ms 3 - 3 MB INT8 NPU XLSR-Quantized.onnx

Installation

This model can be installed as a Python package via pip.

pip install "qai-hub-models[xlsr_quantized]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.xlsr_quantized.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.xlsr_quantized.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.xlsr_quantized.export
Profiling Results
------------------------------------------------------------
XLSR-Quantized
Device                          : Samsung Galaxy S23 (13) 
Runtime                         : TFLITE                  
Estimated inference time (ms)   : 1.1                     
Estimated peak memory usage (MB): [0, 1]                  
Total # Ops                     : 19                      
Compute Unit(s)                 : NPU (16 ops) CPU (3 ops)

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.xlsr_quantized.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.xlsr_quantized.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on XLSR-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of XLSR-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support pytorch models for this pipeline type.