Whisper-Tiny-En: Optimized for Mobile Deployment
Automatic speech recognition (ASR) model for English transcription as well as translation
OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.
This model is an implementation of Whisper-Tiny-En found here.
This repository provides scripts to run Whisper-Tiny-En on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.speech_recognition
- Model Stats:
- Model checkpoint: tiny.en
- Input resolution: 80x3000 (30 seconds audio)
- Mean decoded sequence length: 112 tokens
- Number of parameters (WhisperEncoder): 9.39M
- Model size (WhisperEncoder): 35.9 MB
- Number of parameters (WhisperDecoder): 28.2M
- Model size (WhisperDecoder): 108 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
WhisperEncoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 399.974 ms | 19 - 41 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 106.541 ms | 0 - 269 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 128.571 ms | 20 - 61 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 114.494 ms | 1 - 249 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 100.558 ms | 3 - 41 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 51.037 ms | 1 - 85 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 168.84 ms | 20 - 42 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 54.084 ms | 1 - 270 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 399.974 ms | 19 - 41 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 106.541 ms | 0 - 269 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 100.247 ms | 20 - 68 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 53.614 ms | 0 - 86 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 103.495 ms | 20 - 50 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 81.281 ms | 1 - 252 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 102.579 ms | 20 - 69 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 52.042 ms | 0 - 88 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 168.84 ms | 20 - 42 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 54.084 ms | 1 - 270 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 101.124 ms | 3 - 46 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 53.969 ms | 0 - 85 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 62.752 ms | 36 - 152 MB | NPU | Whisper-Tiny-En.onnx |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 79.074 ms | 18 - 54 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 43.62 ms | 1 - 277 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 51.705 ms | 40 - 443 MB | NPU | Whisper-Tiny-En.onnx |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 67.215 ms | 20 - 46 MB | GPU | Whisper-Tiny-En.tflite |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 34.396 ms | 1 - 265 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 43.803 ms | 39 - 406 MB | NPU | Whisper-Tiny-En.onnx |
WhisperEncoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 51.039 ms | 31 - 31 MB | NPU | Whisper-Tiny-En.dlc |
WhisperEncoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 66.012 ms | 66 - 66 MB | NPU | Whisper-Tiny-En.onnx |
WhisperDecoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 6.417 ms | 3 - 96 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.893 ms | 17 - 90 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 4.175 ms | 3 - 93 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 5.992 ms | 3 - 77 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 3.647 ms | 3 - 50 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.447 ms | 19 - 41 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.497 ms | 3 - 97 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.362 ms | 19 - 93 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 6.417 ms | 3 - 96 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.893 ms | 17 - 90 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 3.601 ms | 3 - 50 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.457 ms | 20 - 42 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.747 ms | 3 - 88 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.41 ms | 3 - 70 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 3.627 ms | 3 - 55 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.498 ms | 20 - 43 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.497 ms | 3 - 97 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.362 ms | 19 - 93 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 3.645 ms | 3 - 43 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.423 ms | 20 - 43 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 4.102 ms | 4 - 176 MB | NPU | Whisper-Tiny-En.onnx |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.762 ms | 0 - 103 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.861 ms | 0 - 83 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.372 ms | 26 - 110 MB | NPU | Whisper-Tiny-En.onnx |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.568 ms | 0 - 90 MB | NPU | Whisper-Tiny-En.tflite |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.383 ms | 6 - 84 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 2.606 ms | 0 - 190 MB | NPU | Whisper-Tiny-En.onnx |
WhisperDecoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.309 ms | 200 - 200 MB | NPU | Whisper-Tiny-En.dlc |
WhisperDecoderInf | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.318 ms | 73 - 73 MB | NPU | Whisper-Tiny-En.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[whisper-tiny-en]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.whisper_tiny_en.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.whisper_tiny_en.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_tiny_en.export
Profiling Results
------------------------------------------------------------
WhisperEncoderInf
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 400.0
Estimated peak memory usage (MB): [19, 41]
Total # Ops : 271
Compute Unit(s) : npu (0 ops) gpu (260 ops) cpu (11 ops)
------------------------------------------------------------
WhisperDecoderInf
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 6.4
Estimated peak memory usage (MB): [3, 96]
Total # Ops : 557
Compute Unit(s) : npu (557 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_tiny_en import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Whisper-Tiny-En's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Whisper-Tiny-En can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 250