File size: 9,696 Bytes
67d94bc cb21ec5 67d94bc cb977b0 67d94bc e105295 cb977b0 67d94bc 389d87b a0c496c e3ebfec a0c496c 67d94bc 389d87b a0c496c 389d87b 67d94bc 389d87b 67d94bc 389d87b 67d94bc 389d87b 67d94bc b3fa19e 67d94bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
library_name: pytorch
license: apache-2.0
pipeline_tag: keypoint-detection
tags:
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/posenet_mobilenet_quantized/web-assets/model_demo.png)
# Posenet-Mobilenet-Quantized: Optimized for Mobile Deployment
## Quantized human pose estimator
Posenet performs pose estimation on human images.
This model is an implementation of Posenet-Mobilenet-Quantized found [here](https://github.com/rwightman/posenet-pytorch).
This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
### Model Details
- **Model Type:** Pose estimation
- **Model Stats:**
- Model checkpoint: mobilenet_v1_101
- Input resolution: 513x257
- Number of parameters: 3.31M
- Model size: 3.47 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.559 ms | 0 - 2 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.633 ms | 0 - 5 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.393 ms | 0 - 49 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.442 ms | 0 - 20 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so) |
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.347 ms | 0 - 27 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.392 ms | 0 - 17 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 2.191 ms | 0 - 27 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 2.87 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 13.626 ms | 0 - 8 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.557 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.556 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.557 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.563 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.556 ms | 0 - 96 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.555 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.56 ms | 0 - 1 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.554 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.212 ms | 0 - 25 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | SA8295P ADP | SA8295P | QNN | 1.275 ms | 0 - 6 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.722 ms | 0 - 49 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite) |
| Posenet-Mobilenet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.804 ms | 0 - 19 MB | INT8 | NPU | Use Export Script |
| Posenet-Mobilenet-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.714 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Posenet-Mobilenet-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.6
Estimated peak memory usage (MB): [0, 2]
Total # Ops : 48
Compute Unit(s) : NPU (48 ops)
```
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.posenet_mobilenet_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Posenet-Mobilenet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Posenet-Mobilenet-Quantized can be found [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
* [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|