qaihm-bot commited on
Commit
67d94bc
1 Parent(s): a61a735

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +159 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - coco
4
+ library_name: pytorch
5
+ license: apache-2.0
6
+ pipeline_tag: image-classification
7
+ tags:
8
+ - quantized
9
+ - android
10
+
11
+ ---
12
+
13
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/posenet_mobilenet_quantized/web-assets/model_demo.png)
14
+
15
+ # Posenet-Mobilenet-Quantized: Optimized for Mobile Deployment
16
+ ## Quantized human pose estimator
17
+
18
+ Posenet performs pose estimation on human images.
19
+
20
+ This model is an implementation of Posenet-Mobilenet-Quantized found [here](https://github.com/rwightman/posenet-pytorch).
21
+ This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices.
22
+ More details on model performance across various devices, can be found
23
+ [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
24
+
25
+
26
+ ### Model Details
27
+
28
+ - **Model Type:** Pose estimation
29
+ - **Model Stats:**
30
+ - Model checkpoint: mobilenet_v1_101
31
+ - Input resolution: 513x257
32
+ - Number of parameters: 3.31M
33
+ - Model size: 3.47 MB
34
+
35
+
36
+
37
+
38
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
+ | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.591 ms | 0 - 2 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.622 ms | 0 - 9 MB | INT8 | NPU | [Posenet-Mobilenet-Quantized.so](https://huggingface.co/qualcomm/Posenet-Mobilenet-Quantized/blob/main/Posenet-Mobilenet-Quantized.so)
42
+
43
+
44
+
45
+ ## Installation
46
+
47
+ This model can be installed as a Python package via pip.
48
+
49
+ ```bash
50
+ pip install qai-hub-models
51
+ ```
52
+
53
+
54
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
55
+
56
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
57
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
58
+
59
+ With this API token, you can configure your client to run models on the cloud
60
+ hosted devices.
61
+ ```bash
62
+ qai-hub configure --api_token API_TOKEN
63
+ ```
64
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
65
+
66
+
67
+
68
+ ## Demo off target
69
+
70
+ The package contains a simple end-to-end demo that downloads pre-trained
71
+ weights and runs this model on a sample input.
72
+
73
+ ```bash
74
+ python -m qai_hub_models.models.posenet_mobilenet_quantized.demo
75
+ ```
76
+
77
+ The above demo runs a reference implementation of pre-processing, model
78
+ inference, and post processing.
79
+
80
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
81
+ environment, please add the following to your cell (instead of the above).
82
+ ```
83
+ %run -m qai_hub_models.models.posenet_mobilenet_quantized.demo
84
+ ```
85
+
86
+
87
+ ### Run model on a cloud-hosted device
88
+
89
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
90
+ device. This script does the following:
91
+ * Performance check on-device on a cloud-hosted device
92
+ * Downloads compiled assets that can be deployed on-device for Android.
93
+ * Accuracy check between PyTorch and on-device outputs.
94
+
95
+ ```bash
96
+ python -m qai_hub_models.models.posenet_mobilenet_quantized.export
97
+ ```
98
+
99
+ ```
100
+ Profile Job summary of Posenet-Mobilenet-Quantized
101
+ --------------------------------------------------
102
+ Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 0.69 ms
104
+ Estimated Peak Memory Range: 0.38-0.38 MB
105
+ Compute Units: NPU (42) | Total (42)
106
+
107
+
108
+ ```
109
+
110
+
111
+
112
+
113
+ ## Run demo on a cloud-hosted device
114
+
115
+ You can also run the demo on-device.
116
+
117
+ ```bash
118
+ python -m qai_hub_models.models.posenet_mobilenet_quantized.demo --on-device
119
+ ```
120
+
121
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
122
+ environment, please add the following to your cell (instead of the above).
123
+ ```
124
+ %run -m qai_hub_models.models.posenet_mobilenet_quantized.demo -- --on-device
125
+ ```
126
+
127
+
128
+ ## Deploying compiled model to Android
129
+
130
+
131
+ The models can be deployed using multiple runtimes:
132
+ - TensorFlow Lite (`.tflite` export): [This
133
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
134
+ guide to deploy the .tflite model in an Android application.
135
+
136
+
137
+ - QNN (`.so` export ): This [sample
138
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
139
+ provides instructions on how to use the `.so` shared library in an Android application.
140
+
141
+
142
+ ## View on Qualcomm® AI Hub
143
+ Get more details on Posenet-Mobilenet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/posenet_mobilenet_quantized).
144
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
145
+
146
+ ## License
147
+ - The license for the original implementation of Posenet-Mobilenet-Quantized can be found
148
+ [here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
149
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
150
+
151
+ ## References
152
+ * [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
153
+ * [Source Model Implementation](https://github.com/rwightman/posenet-pytorch)
154
+
155
+ ## Community
156
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
157
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
158
+
159
+