HuggingFace-WavLM-Base-Plus: Optimized for Mobile Deployment

Real-time Speech processing

HuggingFaceWavLMBasePlus is a real time speech processing backbone based on Microsoft's WavLM model.

This model is an implementation of HuggingFace-WavLM-Base-Plus found here.

This repository provides scripts to run HuggingFace-WavLM-Base-Plus on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Speech recognition
  • Model Stats:
    • Model checkpoint: wavlm-libri-clean-100h-base-plus
    • Input resolution: 1x320000
    • Number of parameters: 95.1M
    • Model size: 363 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
HuggingFace-WavLM-Base-Plus Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 164.023 ms 0 - 50 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 181.343 ms 3 - 442 MB FP16 NPU HuggingFace-WavLM-Base-Plus.onnx
HuggingFace-WavLM-Base-Plus Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 120.214 ms 1 - 193 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 131.235 ms 2 - 728 MB FP16 NPU HuggingFace-WavLM-Base-Plus.onnx
HuggingFace-WavLM-Base-Plus Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 117.174 ms 1 - 206 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 114.035 ms 2 - 749 MB FP16 NPU HuggingFace-WavLM-Base-Plus.onnx
HuggingFace-WavLM-Base-Plus SA7255P ADP SA7255P TFLITE 2268.84 ms 0 - 202 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus SA8255 (Proxy) SA8255P Proxy TFLITE 164.093 ms 2 - 51 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus SA8295P ADP SA8295P TFLITE 270.626 ms 1 - 196 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus SA8650 (Proxy) SA8650P Proxy TFLITE 164.721 ms 0 - 66 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus SA8775P ADP SA8775P TFLITE 225.045 ms 1 - 203 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus QCS8275 (Proxy) QCS8275 Proxy TFLITE 2268.84 ms 0 - 202 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus QCS8550 (Proxy) QCS8550 Proxy TFLITE 163.494 ms 0 - 52 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus QCS9075 (Proxy) QCS9075 Proxy TFLITE 225.045 ms 1 - 203 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus QCS8450 (Proxy) QCS8450 Proxy TFLITE 247.182 ms 1 - 191 MB FP16 NPU HuggingFace-WavLM-Base-Plus.tflite
HuggingFace-WavLM-Base-Plus Snapdragon X Elite CRD Snapdragon® X Elite ONNX 185.751 ms 207 - 207 MB FP16 NPU HuggingFace-WavLM-Base-Plus.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[huggingface-wavlm-base-plus]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.huggingface_wavlm_base_plus.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.huggingface_wavlm_base_plus.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.huggingface_wavlm_base_plus.export
Profiling Results
------------------------------------------------------------
HuggingFace-WavLM-Base-Plus
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 164.0                  
Estimated peak memory usage (MB): [0, 50]                
Total # Ops                     : 871                    
Compute Unit(s)                 : NPU (871 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.huggingface_wavlm_base_plus import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on HuggingFace-WavLM-Base-Plus's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of HuggingFace-WavLM-Base-Plus can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support automatic-speech-recognition models for pytorch library.