metadata
base_model: uer/gpt2-chinese-cluecorpussmall
tags:
- generated_from_trainer
datasets:
- lip_service4chan
model-index:
- name: lib_service_4chan
results: []
language:
- zh
pipeline_tag: conversational
lib_service_4chan
This model is a fine-tuned version of uer/gpt2-chinese-cluecorpussmall on the lip_service_4chan dataset.
Lip Service 满嘴芬芳,吵架陪练员。
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.716 | 0.01 | 100 | 1.9495 |
1.8985 | 0.02 | 200 | 1.6915 |
1.7151 | 0.02 | 300 | 1.5763 |
1.6217 | 0.03 | 400 | 1.5115 |
1.564 | 0.04 | 500 | 1.4694 |
1.5461 | 0.05 | 600 | 1.4379 |
1.4943 | 0.06 | 700 | 1.4127 |
1.4737 | 0.07 | 800 | 1.3890 |
1.4399 | 0.07 | 900 | 1.3813 |
1.4356 | 0.08 | 1000 | 1.3540 |
1.3999 | 0.09 | 1100 | 1.3329 |
1.3668 | 0.1 | 1200 | 1.3153 |
1.3604 | 0.11 | 1300 | 1.3029 |
1.3352 | 0.12 | 1400 | 1.2834 |
1.3278 | 0.12 | 1500 | 1.2619 |
1.315 | 0.13 | 1600 | 1.2539 |
1.2854 | 0.14 | 1700 | 1.2432 |
1.292 | 0.15 | 1800 | 1.2288 |
1.2795 | 0.16 | 1900 | 1.2188 |
1.2677 | 0.16 | 2000 | 1.2059 |
1.2599 | 0.17 | 2100 | 1.2019 |
1.2479 | 0.18 | 2200 | 1.1915 |
1.2245 | 0.19 | 2300 | 1.1827 |
1.2326 | 0.2 | 2400 | 1.1734 |
1.2124 | 0.21 | 2500 | 1.1660 |
1.2171 | 0.21 | 2600 | 1.1576 |
1.1917 | 0.22 | 2700 | 1.1518 |
1.1867 | 0.23 | 2800 | 1.1444 |
1.1821 | 0.24 | 2900 | 1.1386 |
1.1741 | 0.25 | 3000 | 1.1347 |
1.1753 | 0.25 | 3100 | 1.1293 |
1.1629 | 0.26 | 3200 | 1.1264 |
1.1694 | 0.27 | 3300 | 1.1201 |
1.1482 | 0.28 | 3400 | 1.1146 |
1.156 | 0.29 | 3500 | 1.1052 |
1.1512 | 0.3 | 3600 | 1.0982 |
1.142 | 0.3 | 3700 | 1.0971 |
1.1544 | 0.31 | 3800 | 1.0920 |
1.1312 | 0.32 | 3900 | 1.0869 |
1.1394 | 0.33 | 4000 | 1.0808 |
1.123 | 0.34 | 4100 | 1.0747 |
1.1154 | 0.35 | 4200 | 1.0715 |
1.1064 | 0.35 | 4300 | 1.0674 |
1.1245 | 0.36 | 4400 | 1.0620 |
1.1036 | 0.37 | 4500 | 1.0575 |
1.0963 | 0.38 | 4600 | 1.0568 |
1.0987 | 0.39 | 4700 | 1.0491 |
1.0859 | 0.39 | 4800 | 1.0443 |
1.0845 | 0.4 | 4900 | 1.0432 |
1.0938 | 0.41 | 5000 | 1.0410 |
1.087 | 0.42 | 5100 | 1.0334 |
1.077 | 0.43 | 5200 | 1.0324 |
1.0787 | 0.44 | 5300 | 1.0276 |
1.068 | 0.44 | 5400 | 1.0220 |
1.0748 | 0.45 | 5500 | 1.0199 |
1.0622 | 0.46 | 5600 | 1.0169 |
1.0555 | 0.47 | 5700 | 1.0153 |
1.0498 | 0.48 | 5800 | 1.0100 |
1.055 | 0.49 | 5900 | 1.0074 |
1.0424 | 0.49 | 6000 | 1.0020 |
1.0465 | 0.5 | 6100 | 0.9976 |
1.0414 | 0.51 | 6200 | 0.9942 |
1.0355 | 0.52 | 6300 | 0.9919 |
1.0234 | 0.53 | 6400 | 0.9883 |
1.0205 | 0.53 | 6500 | 0.9857 |
1.0316 | 0.54 | 6600 | 0.9805 |
1.0137 | 0.55 | 6700 | 0.9788 |
1.0222 | 0.56 | 6800 | 0.9773 |
1.0219 | 0.57 | 6900 | 0.9722 |
1.0032 | 0.58 | 7000 | 0.9706 |
1.0039 | 0.58 | 7100 | 0.9669 |
1.0166 | 0.59 | 7200 | 0.9635 |
1.0065 | 0.6 | 7300 | 0.9614 |
1.0087 | 0.61 | 7400 | 0.9574 |
0.9968 | 0.62 | 7500 | 0.9525 |
1.0031 | 0.62 | 7600 | 0.9503 |
0.99 | 0.63 | 7700 | 0.9491 |
0.9946 | 0.64 | 7800 | 0.9457 |
0.9944 | 0.65 | 7900 | 0.9424 |
0.9854 | 0.66 | 8000 | 0.9399 |
0.9797 | 0.67 | 8100 | 0.9364 |
0.9804 | 0.67 | 8200 | 0.9341 |
0.9835 | 0.68 | 8300 | 0.9318 |
0.9849 | 0.69 | 8400 | 0.9299 |
0.9753 | 0.7 | 8500 | 0.9274 |
0.975 | 0.71 | 8600 | 0.9238 |
0.9649 | 0.72 | 8700 | 0.9225 |
0.9654 | 0.72 | 8800 | 0.9202 |
0.958 | 0.73 | 8900 | 0.9167 |
0.9679 | 0.74 | 9000 | 0.9143 |
0.9631 | 0.75 | 9100 | 0.9110 |
0.9633 | 0.76 | 9200 | 0.9086 |
0.9495 | 0.76 | 9300 | 0.9071 |
0.9625 | 0.77 | 9400 | 0.9036 |
0.9519 | 0.78 | 9500 | 0.9023 |
0.9399 | 0.79 | 9600 | 0.8993 |
0.9624 | 0.8 | 9700 | 0.8973 |
0.9418 | 0.81 | 9800 | 0.8963 |
0.9394 | 0.81 | 9900 | 0.8933 |
0.947 | 0.82 | 10000 | 0.8919 |
0.9326 | 0.83 | 10100 | 0.8900 |
0.9326 | 0.84 | 10200 | 0.8886 |
0.9343 | 0.85 | 10300 | 0.8860 |
0.9263 | 0.85 | 10400 | 0.8841 |
0.9256 | 0.86 | 10500 | 0.8818 |
0.9373 | 0.87 | 10600 | 0.8807 |
0.9314 | 0.88 | 10700 | 0.8789 |
0.9203 | 0.89 | 10800 | 0.8770 |
0.927 | 0.9 | 10900 | 0.8754 |
0.934 | 0.9 | 11000 | 0.8744 |
0.9193 | 0.91 | 11100 | 0.8727 |
0.9185 | 0.92 | 11200 | 0.8714 |
0.9188 | 0.93 | 11300 | 0.8702 |
0.9165 | 0.94 | 11400 | 0.8693 |
0.9209 | 0.95 | 11500 | 0.8682 |
0.9241 | 0.95 | 11600 | 0.8670 |
0.9182 | 0.96 | 11700 | 0.8662 |
0.9076 | 0.97 | 11800 | 0.8653 |
0.9225 | 0.98 | 11900 | 0.8643 |
0.9094 | 0.99 | 12000 | 0.8640 |
0.913 | 0.99 | 12100 | 0.8635 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3