File size: 7,489 Bytes
431ab53 ebe71c5 431ab53 dc2234a 431ab53 ebe71c5 431ab53 ebe71c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
base_model: uer/gpt2-chinese-cluecorpussmall
tags:
- generated_from_trainer
datasets:
- lip_service4chan
model-index:
- name: lib_service_4chan
results: []
language:
- zh
pipeline_tag: conversational
---
# lib_service_4chan
This model is a fine-tuned version of [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) on the [lip_service_4chan](https://huggingface.co/datasets/qgyd2021/lip_service_4chan) dataset.
Lip Service 满嘴芬芳,吵架陪练员。
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.716 | 0.01 | 100 | 1.9495 |
| 1.8985 | 0.02 | 200 | 1.6915 |
| 1.7151 | 0.02 | 300 | 1.5763 |
| 1.6217 | 0.03 | 400 | 1.5115 |
| 1.564 | 0.04 | 500 | 1.4694 |
| 1.5461 | 0.05 | 600 | 1.4379 |
| 1.4943 | 0.06 | 700 | 1.4127 |
| 1.4737 | 0.07 | 800 | 1.3890 |
| 1.4399 | 0.07 | 900 | 1.3813 |
| 1.4356 | 0.08 | 1000 | 1.3540 |
| 1.3999 | 0.09 | 1100 | 1.3329 |
| 1.3668 | 0.1 | 1200 | 1.3153 |
| 1.3604 | 0.11 | 1300 | 1.3029 |
| 1.3352 | 0.12 | 1400 | 1.2834 |
| 1.3278 | 0.12 | 1500 | 1.2619 |
| 1.315 | 0.13 | 1600 | 1.2539 |
| 1.2854 | 0.14 | 1700 | 1.2432 |
| 1.292 | 0.15 | 1800 | 1.2288 |
| 1.2795 | 0.16 | 1900 | 1.2188 |
| 1.2677 | 0.16 | 2000 | 1.2059 |
| 1.2599 | 0.17 | 2100 | 1.2019 |
| 1.2479 | 0.18 | 2200 | 1.1915 |
| 1.2245 | 0.19 | 2300 | 1.1827 |
| 1.2326 | 0.2 | 2400 | 1.1734 |
| 1.2124 | 0.21 | 2500 | 1.1660 |
| 1.2171 | 0.21 | 2600 | 1.1576 |
| 1.1917 | 0.22 | 2700 | 1.1518 |
| 1.1867 | 0.23 | 2800 | 1.1444 |
| 1.1821 | 0.24 | 2900 | 1.1386 |
| 1.1741 | 0.25 | 3000 | 1.1347 |
| 1.1753 | 0.25 | 3100 | 1.1293 |
| 1.1629 | 0.26 | 3200 | 1.1264 |
| 1.1694 | 0.27 | 3300 | 1.1201 |
| 1.1482 | 0.28 | 3400 | 1.1146 |
| 1.156 | 0.29 | 3500 | 1.1052 |
| 1.1512 | 0.3 | 3600 | 1.0982 |
| 1.142 | 0.3 | 3700 | 1.0971 |
| 1.1544 | 0.31 | 3800 | 1.0920 |
| 1.1312 | 0.32 | 3900 | 1.0869 |
| 1.1394 | 0.33 | 4000 | 1.0808 |
| 1.123 | 0.34 | 4100 | 1.0747 |
| 1.1154 | 0.35 | 4200 | 1.0715 |
| 1.1064 | 0.35 | 4300 | 1.0674 |
| 1.1245 | 0.36 | 4400 | 1.0620 |
| 1.1036 | 0.37 | 4500 | 1.0575 |
| 1.0963 | 0.38 | 4600 | 1.0568 |
| 1.0987 | 0.39 | 4700 | 1.0491 |
| 1.0859 | 0.39 | 4800 | 1.0443 |
| 1.0845 | 0.4 | 4900 | 1.0432 |
| 1.0938 | 0.41 | 5000 | 1.0410 |
| 1.087 | 0.42 | 5100 | 1.0334 |
| 1.077 | 0.43 | 5200 | 1.0324 |
| 1.0787 | 0.44 | 5300 | 1.0276 |
| 1.068 | 0.44 | 5400 | 1.0220 |
| 1.0748 | 0.45 | 5500 | 1.0199 |
| 1.0622 | 0.46 | 5600 | 1.0169 |
| 1.0555 | 0.47 | 5700 | 1.0153 |
| 1.0498 | 0.48 | 5800 | 1.0100 |
| 1.055 | 0.49 | 5900 | 1.0074 |
| 1.0424 | 0.49 | 6000 | 1.0020 |
| 1.0465 | 0.5 | 6100 | 0.9976 |
| 1.0414 | 0.51 | 6200 | 0.9942 |
| 1.0355 | 0.52 | 6300 | 0.9919 |
| 1.0234 | 0.53 | 6400 | 0.9883 |
| 1.0205 | 0.53 | 6500 | 0.9857 |
| 1.0316 | 0.54 | 6600 | 0.9805 |
| 1.0137 | 0.55 | 6700 | 0.9788 |
| 1.0222 | 0.56 | 6800 | 0.9773 |
| 1.0219 | 0.57 | 6900 | 0.9722 |
| 1.0032 | 0.58 | 7000 | 0.9706 |
| 1.0039 | 0.58 | 7100 | 0.9669 |
| 1.0166 | 0.59 | 7200 | 0.9635 |
| 1.0065 | 0.6 | 7300 | 0.9614 |
| 1.0087 | 0.61 | 7400 | 0.9574 |
| 0.9968 | 0.62 | 7500 | 0.9525 |
| 1.0031 | 0.62 | 7600 | 0.9503 |
| 0.99 | 0.63 | 7700 | 0.9491 |
| 0.9946 | 0.64 | 7800 | 0.9457 |
| 0.9944 | 0.65 | 7900 | 0.9424 |
| 0.9854 | 0.66 | 8000 | 0.9399 |
| 0.9797 | 0.67 | 8100 | 0.9364 |
| 0.9804 | 0.67 | 8200 | 0.9341 |
| 0.9835 | 0.68 | 8300 | 0.9318 |
| 0.9849 | 0.69 | 8400 | 0.9299 |
| 0.9753 | 0.7 | 8500 | 0.9274 |
| 0.975 | 0.71 | 8600 | 0.9238 |
| 0.9649 | 0.72 | 8700 | 0.9225 |
| 0.9654 | 0.72 | 8800 | 0.9202 |
| 0.958 | 0.73 | 8900 | 0.9167 |
| 0.9679 | 0.74 | 9000 | 0.9143 |
| 0.9631 | 0.75 | 9100 | 0.9110 |
| 0.9633 | 0.76 | 9200 | 0.9086 |
| 0.9495 | 0.76 | 9300 | 0.9071 |
| 0.9625 | 0.77 | 9400 | 0.9036 |
| 0.9519 | 0.78 | 9500 | 0.9023 |
| 0.9399 | 0.79 | 9600 | 0.8993 |
| 0.9624 | 0.8 | 9700 | 0.8973 |
| 0.9418 | 0.81 | 9800 | 0.8963 |
| 0.9394 | 0.81 | 9900 | 0.8933 |
| 0.947 | 0.82 | 10000 | 0.8919 |
| 0.9326 | 0.83 | 10100 | 0.8900 |
| 0.9326 | 0.84 | 10200 | 0.8886 |
| 0.9343 | 0.85 | 10300 | 0.8860 |
| 0.9263 | 0.85 | 10400 | 0.8841 |
| 0.9256 | 0.86 | 10500 | 0.8818 |
| 0.9373 | 0.87 | 10600 | 0.8807 |
| 0.9314 | 0.88 | 10700 | 0.8789 |
| 0.9203 | 0.89 | 10800 | 0.8770 |
| 0.927 | 0.9 | 10900 | 0.8754 |
| 0.934 | 0.9 | 11000 | 0.8744 |
| 0.9193 | 0.91 | 11100 | 0.8727 |
| 0.9185 | 0.92 | 11200 | 0.8714 |
| 0.9188 | 0.93 | 11300 | 0.8702 |
| 0.9165 | 0.94 | 11400 | 0.8693 |
| 0.9209 | 0.95 | 11500 | 0.8682 |
| 0.9241 | 0.95 | 11600 | 0.8670 |
| 0.9182 | 0.96 | 11700 | 0.8662 |
| 0.9076 | 0.97 | 11800 | 0.8653 |
| 0.9225 | 0.98 | 11900 | 0.8643 |
| 0.9094 | 0.99 | 12000 | 0.8640 |
| 0.913 | 0.99 | 12100 | 0.8635 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3 |