File size: 7,490 Bytes
431ab53
 
 
 
 
 
 
 
 
ebe71c5
 
ec75d3b
431ab53
 
 
 
dc2234a
431ab53
ebe71c5
431ab53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe71c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
base_model: uer/gpt2-chinese-cluecorpussmall
tags:
- generated_from_trainer
datasets:
- lip_service4chan
model-index:
- name: lib_service_4chan
  results: []
language:
- zh
pipeline_tag: text-generation
---

# lib_service_4chan

This model is a fine-tuned version of [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) on the [lip_service_4chan](https://huggingface.co/datasets/qgyd2021/lip_service_4chan) dataset.

Lip Service 满嘴芬芳,吵架陪练员。

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.716         | 0.01  | 100   | 1.9495          |
| 1.8985        | 0.02  | 200   | 1.6915          |
| 1.7151        | 0.02  | 300   | 1.5763          |
| 1.6217        | 0.03  | 400   | 1.5115          |
| 1.564         | 0.04  | 500   | 1.4694          |
| 1.5461        | 0.05  | 600   | 1.4379          |
| 1.4943        | 0.06  | 700   | 1.4127          |
| 1.4737        | 0.07  | 800   | 1.3890          |
| 1.4399        | 0.07  | 900   | 1.3813          |
| 1.4356        | 0.08  | 1000  | 1.3540          |
| 1.3999        | 0.09  | 1100  | 1.3329          |
| 1.3668        | 0.1   | 1200  | 1.3153          |
| 1.3604        | 0.11  | 1300  | 1.3029          |
| 1.3352        | 0.12  | 1400  | 1.2834          |
| 1.3278        | 0.12  | 1500  | 1.2619          |
| 1.315         | 0.13  | 1600  | 1.2539          |
| 1.2854        | 0.14  | 1700  | 1.2432          |
| 1.292         | 0.15  | 1800  | 1.2288          |
| 1.2795        | 0.16  | 1900  | 1.2188          |
| 1.2677        | 0.16  | 2000  | 1.2059          |
| 1.2599        | 0.17  | 2100  | 1.2019          |
| 1.2479        | 0.18  | 2200  | 1.1915          |
| 1.2245        | 0.19  | 2300  | 1.1827          |
| 1.2326        | 0.2   | 2400  | 1.1734          |
| 1.2124        | 0.21  | 2500  | 1.1660          |
| 1.2171        | 0.21  | 2600  | 1.1576          |
| 1.1917        | 0.22  | 2700  | 1.1518          |
| 1.1867        | 0.23  | 2800  | 1.1444          |
| 1.1821        | 0.24  | 2900  | 1.1386          |
| 1.1741        | 0.25  | 3000  | 1.1347          |
| 1.1753        | 0.25  | 3100  | 1.1293          |
| 1.1629        | 0.26  | 3200  | 1.1264          |
| 1.1694        | 0.27  | 3300  | 1.1201          |
| 1.1482        | 0.28  | 3400  | 1.1146          |
| 1.156         | 0.29  | 3500  | 1.1052          |
| 1.1512        | 0.3   | 3600  | 1.0982          |
| 1.142         | 0.3   | 3700  | 1.0971          |
| 1.1544        | 0.31  | 3800  | 1.0920          |
| 1.1312        | 0.32  | 3900  | 1.0869          |
| 1.1394        | 0.33  | 4000  | 1.0808          |
| 1.123         | 0.34  | 4100  | 1.0747          |
| 1.1154        | 0.35  | 4200  | 1.0715          |
| 1.1064        | 0.35  | 4300  | 1.0674          |
| 1.1245        | 0.36  | 4400  | 1.0620          |
| 1.1036        | 0.37  | 4500  | 1.0575          |
| 1.0963        | 0.38  | 4600  | 1.0568          |
| 1.0987        | 0.39  | 4700  | 1.0491          |
| 1.0859        | 0.39  | 4800  | 1.0443          |
| 1.0845        | 0.4   | 4900  | 1.0432          |
| 1.0938        | 0.41  | 5000  | 1.0410          |
| 1.087         | 0.42  | 5100  | 1.0334          |
| 1.077         | 0.43  | 5200  | 1.0324          |
| 1.0787        | 0.44  | 5300  | 1.0276          |
| 1.068         | 0.44  | 5400  | 1.0220          |
| 1.0748        | 0.45  | 5500  | 1.0199          |
| 1.0622        | 0.46  | 5600  | 1.0169          |
| 1.0555        | 0.47  | 5700  | 1.0153          |
| 1.0498        | 0.48  | 5800  | 1.0100          |
| 1.055         | 0.49  | 5900  | 1.0074          |
| 1.0424        | 0.49  | 6000  | 1.0020          |
| 1.0465        | 0.5   | 6100  | 0.9976          |
| 1.0414        | 0.51  | 6200  | 0.9942          |
| 1.0355        | 0.52  | 6300  | 0.9919          |
| 1.0234        | 0.53  | 6400  | 0.9883          |
| 1.0205        | 0.53  | 6500  | 0.9857          |
| 1.0316        | 0.54  | 6600  | 0.9805          |
| 1.0137        | 0.55  | 6700  | 0.9788          |
| 1.0222        | 0.56  | 6800  | 0.9773          |
| 1.0219        | 0.57  | 6900  | 0.9722          |
| 1.0032        | 0.58  | 7000  | 0.9706          |
| 1.0039        | 0.58  | 7100  | 0.9669          |
| 1.0166        | 0.59  | 7200  | 0.9635          |
| 1.0065        | 0.6   | 7300  | 0.9614          |
| 1.0087        | 0.61  | 7400  | 0.9574          |
| 0.9968        | 0.62  | 7500  | 0.9525          |
| 1.0031        | 0.62  | 7600  | 0.9503          |
| 0.99          | 0.63  | 7700  | 0.9491          |
| 0.9946        | 0.64  | 7800  | 0.9457          |
| 0.9944        | 0.65  | 7900  | 0.9424          |
| 0.9854        | 0.66  | 8000  | 0.9399          |
| 0.9797        | 0.67  | 8100  | 0.9364          |
| 0.9804        | 0.67  | 8200  | 0.9341          |
| 0.9835        | 0.68  | 8300  | 0.9318          |
| 0.9849        | 0.69  | 8400  | 0.9299          |
| 0.9753        | 0.7   | 8500  | 0.9274          |
| 0.975         | 0.71  | 8600  | 0.9238          |
| 0.9649        | 0.72  | 8700  | 0.9225          |
| 0.9654        | 0.72  | 8800  | 0.9202          |
| 0.958         | 0.73  | 8900  | 0.9167          |
| 0.9679        | 0.74  | 9000  | 0.9143          |
| 0.9631        | 0.75  | 9100  | 0.9110          |
| 0.9633        | 0.76  | 9200  | 0.9086          |
| 0.9495        | 0.76  | 9300  | 0.9071          |
| 0.9625        | 0.77  | 9400  | 0.9036          |
| 0.9519        | 0.78  | 9500  | 0.9023          |
| 0.9399        | 0.79  | 9600  | 0.8993          |
| 0.9624        | 0.8   | 9700  | 0.8973          |
| 0.9418        | 0.81  | 9800  | 0.8963          |
| 0.9394        | 0.81  | 9900  | 0.8933          |
| 0.947         | 0.82  | 10000 | 0.8919          |
| 0.9326        | 0.83  | 10100 | 0.8900          |
| 0.9326        | 0.84  | 10200 | 0.8886          |
| 0.9343        | 0.85  | 10300 | 0.8860          |
| 0.9263        | 0.85  | 10400 | 0.8841          |
| 0.9256        | 0.86  | 10500 | 0.8818          |
| 0.9373        | 0.87  | 10600 | 0.8807          |
| 0.9314        | 0.88  | 10700 | 0.8789          |
| 0.9203        | 0.89  | 10800 | 0.8770          |
| 0.927         | 0.9   | 10900 | 0.8754          |
| 0.934         | 0.9   | 11000 | 0.8744          |
| 0.9193        | 0.91  | 11100 | 0.8727          |
| 0.9185        | 0.92  | 11200 | 0.8714          |
| 0.9188        | 0.93  | 11300 | 0.8702          |
| 0.9165        | 0.94  | 11400 | 0.8693          |
| 0.9209        | 0.95  | 11500 | 0.8682          |
| 0.9241        | 0.95  | 11600 | 0.8670          |
| 0.9182        | 0.96  | 11700 | 0.8662          |
| 0.9076        | 0.97  | 11800 | 0.8653          |
| 0.9225        | 0.98  | 11900 | 0.8643          |
| 0.9094        | 0.99  | 12000 | 0.8640          |
| 0.913         | 0.99  | 12100 | 0.8635          |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3