File size: 18,540 Bytes
b7d1559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f67e53ee0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f67e53f70>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f67e55040>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f67e550d0>",
"_build": "<function ActorCriticPolicy._build at 0x7f5f67e55160>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5f67e551f0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f67e55280>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f67e55310>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5f67e553a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f67e55430>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f67e554c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f67e55550>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f5f67e56380>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1001472,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676725016485543931,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"tensorboard_log": "runs/Swimmer-v3__trpo__2649846326__1676725012/Swimmer-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAHdbiYU8y7O/gmZ09fewtr/Q9WAAQ9yjP6Q6sM2NK6Y/sNKr+GNWgT8wfN2bq7+nPygxILMZArE/4untP+set7/tZs/9dMSwv+j4pN4cBJ+/3BKySb0rtz9Y/GX8pNSMv91h4YILIK6/DREpl9pjqb+ish1EmzeyP7B7Ah7lhYm/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0014719999999999178,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHHqLh3cOYECUhpRSlIwBbJRN6AOMAXSUR0CdxjOlwcYJdX2UKGgGaAloD0MI8N5RY0K5X0CUhpRSlGgVTegDaBZHQJ3GLVtoBaN1fZQoaAZoCWgPQwhBtixfl5peQJSGlFKUaBVN6ANoFkdAndWSL2pQ13V9lChoBmgJaA9DCDmaIys/FmBAlIaUUpRoFU3oA2gWR0Cd1YvicXnAdX2UKGgGaAloD0MIRNycSgYdXECUhpRSlGgVTegDaBZHQJ3k0yEcsDp1fZQoaAZoCWgPQwhCmNu93EBdQJSGlFKUaBVN6ANoFkdAneTMzZYgaHV9lChoBmgJaA9DCAkyAiocVGBAlIaUUpRoFU3oA2gWR0Cd9K5c1O0tdX2UKGgGaAloD0MImMCtu/laYECUhpRSlGgVTegDaBZHQJ30qBDohZB1fZQoaAZoCWgPQwi+a9CX3iVcQJSGlFKUaBVN6ANoFkdAngPTabnX/nV9lChoBmgJaA9DCJXYtb1dUGBAlIaUUpRoFU3oA2gWR0CeA80bLlmwdX2UKGgGaAloD0MIXtVZLbASXUCUhpRSlGgVTegDaBZHQJ4TTOX3QD51fZQoaAZoCWgPQwiYhuEjYghgQJSGlFKUaBVN6ANoFkdAnhNGl67dznV9lChoBmgJaA9DCPCJdar8bWBAlIaUUpRoFU3oA2gWR0CeIUEnLJS0dX2UKGgGaAloD0MIeAq5Us+aXUCUhpRSlGgVTegDaBZHQJ4hOtZFG5N1fZQoaAZoCWgPQwh1WyIXnJBfQJSGlFKUaBVN6ANoFkdAni/C0KJEY3V9lChoBmgJaA9DCNtugm+a6V9AlIaUUpRoFU3oA2gWR0CeL7yC4BmxdX2UKGgGaAloD0MIHlN3ZRdlXECUhpRSlGgVTegDaBZHQJ4+9PBSDRN1fZQoaAZoCWgPQwjieD4D6lBgQJSGlFKUaBVN6ANoFkdAnj7unqFAV3V9lChoBmgJaA9DCCSdgZGXAVxAlIaUUpRoFU3oA2gWR0CeTQ0bcXWOdX2UKGgGaAloD0MI0/caguMxX0CUhpRSlGgVTegDaBZHQJ5NBschkiF1fZQoaAZoCWgPQwhGelG73yxgQJSGlFKUaBVN6ANoFkdAnlz8pobn5nV9lChoBmgJaA9DCGraxTTTS11AlIaUUpRoFU3oA2gWR0CeXPZr56+ndX2UKGgGaAloD0MIZ9ZSQNoUYECUhpRSlGgVTegDaBZHQJ5sHQ7cO9Z1fZQoaAZoCWgPQwj3ksZoHQFcQJSGlFKUaBVN6ANoFkdAnmwW1lXii3V9lChoBmgJaA9DCOlILv8h/FtAlIaUUpRoFU3oA2gWR0Cel/4YaYNRdX2UKGgGaAloD0MIFsCUgYNZYECUhpRSlGgVTegDaBZHQJ6X98v24/h1fZQoaAZoCWgPQwj+utOdJ0hgQJSGlFKUaBVN6ANoFkdAnqea+rU9ZHV9lChoBmgJaA9DCMQlx51SEWBAlIaUUpRoFU3oA2gWR0Cep5S/0ulHdX2UKGgGaAloD0MIAi1dwTYQX0CUhpRSlGgVTegDaBZHQJ6213jdYXB1fZQoaAZoCWgPQwhJ1XYTfIlfQJSGlFKUaBVN6ANoFkdAnrbRK+SKWXV9lChoBmgJaA9DCGjsSzYeil1AlIaUUpRoFU3oA2gWR0CexpwCbMHKdX2UKGgGaAloD0MI0o+GU+aoX0CUhpRSlGgVTegDaBZHQJ7GlcjZ+QV1fZQoaAZoCWgPQwhwlpLlJP5bQJSGlFKUaBVN6ANoFkdAntVuzIFNcnV9lChoBmgJaA9DCOFGyhZJ11tAlIaUUpRoFU3oA2gWR0Ce1WiWmgrZdX2UKGgGaAloD0MIE57Q60+VXUCUhpRSlGgVTegDaBZHQJ7jgOAiFCd1fZQoaAZoCWgPQwg6zQLtDolcQJSGlFKUaBVN6ANoFkdAnuN6p97Wu3V9lChoBmgJaA9DCI20VN6OIWBAlIaUUpRoFU3oA2gWR0Ce9Cm7aqS6dX2UKGgGaAloD0MIDVNb6iBkX0CUhpRSlGgVTegDaBZHQJ70I6JZW7x1fZQoaAZoCWgPQwhm+E830FxgQJSGlFKUaBVN6ANoFkdAnv55D/lyR3V9lChoBmgJaA9DCO56aYqANGBAlIaUUpRoFU3oA2gWR0Ce/nLFXJYDdX2UKGgGaAloD0MIBARz9PgCXkCUhpRSlGgVTegDaBZHQJ8Og1YQrc11fZQoaAZoCWgPQwg+yogLwGRgQJSGlFKUaBVN6ANoFkdAnw59CeEqUnV9lChoBmgJaA9DCGfROxVwylxAlIaUUpRoFU3oA2gWR0CfHFwgDA8CdX2UKGgGaAloD0MItU5cjldmXECUhpRSlGgVTegDaBZHQJ8cVezD4xl1fZQoaAZoCWgPQwiyZfm6DARgQJSGlFKUaBVN6ANoFkdAnyqlx0dRznV9lChoBmgJaA9DCJp3nKIjuVxAlIaUUpRoFU3oA2gWR0CfKp98Z1mrdX2UKGgGaAloD0MIZkmAmloLXUCUhpRSlGgVTegDaBZHQJ85OntOVPh1fZQoaAZoCWgPQwijHqLRHWVcQJSGlFKUaBVN6ANoFkdAnzk0Ja7mMnV9lChoBmgJaA9DCORmuAGfw15AlIaUUpRoFU3oA2gWR0CfR899c8kldX2UKGgGaAloD0MIVd6OcFpTYECUhpRSlGgVTegDaBZHQJ9HySyMUAV1fZQoaAZoCWgPQwhI/mDguQtgQJSGlFKUaBVN6ANoFkdAn3LKY7aIvnV9lChoBmgJaA9DCGZrfZFQW2BAlIaUUpRoFU3oA2gWR0CfcsQaaTfSdX2UKGgGaAloD0MIi4wOSMLqW0CUhpRSlGgVTegDaBZHQJ+B3uDzyz51fZQoaAZoCWgPQwg6BmSvdypgQJSGlFKUaBVN6ANoFkdAn4HYppeu3nV9lChoBmgJaA9DCKxWJvxSDl1AlIaUUpRoFU3oA2gWR0Cfkm3w1BMSdX2UKGgGaAloD0MImL1sO21BXkCUhpRSlGgVTegDaBZHQJ+SZ6MR6GB1fZQoaAZoCWgPQwjye5v+7GFdQJSGlFKUaBVN6ANoFkdAn6KXyVfNRnV9lChoBmgJaA9DCMehfhe2TmBAlIaUUpRoFU3oA2gWR0CfopF+/gzhdX2UKGgGaAloD0MIr1sExvr0X0CUhpRSlGgVTegDaBZHQJ+wtjurp7l1fZQoaAZoCWgPQwh31m670HNcQJSGlFKUaBVN6ANoFkdAn7Cv779AHHV9lChoBmgJaA9DCObJNQUyqV5AlIaUUpRoFU3oA2gWR0Cfvlay8jA0dX2UKGgGaAloD0MIeQd40sIpXUCUhpRSlGgVTegDaBZHQJ++UF0PpY91fZQoaAZoCWgPQwgHfH4YIVJgQJSGlFKUaBVN6ANoFkdAn8wqZUkv9XV9lChoBmgJaA9DCP1qDhDMYF1AlIaUUpRoFU3oA2gWR0CfzCQNkOI7dX2UKGgGaAloD0MI2SJpN/qLXECUhpRSlGgVTegDaBZHQJ/br67/XGx1fZQoaAZoCWgPQwgdzCbAsE5dQJSGlFKUaBVN6ANoFkdAn9upWV/tpnV9lChoBmgJaA9DCM4cklooa2BAlIaUUpRoFU3oA2gWR0Cf6XA5Jbt7dX2UKGgGaAloD0MIK8O4G0TCXUCUhpRSlGgVTegDaBZHQJ/paecx0uF1fZQoaAZoCWgPQwh2qKYk615gQJSGlFKUaBVN6ANoFkdAn/d/nbItDnV9lChoBmgJaA9DCKGDLuHQR19AlIaUUpRoFU3oA2gWR0Cf93lN1yNodX2UKGgGaAloD0MI+fTYlgFMXkCUhpRSlGgVTegDaBZHQKADAcnVoYh1fZQoaAZoCWgPQwhm+iXircZcQJSGlFKUaBVN6ANoFkdAoAL+nyd4FHV9lChoBmgJaA9DCE4oRMAhuV9AlIaUUpRoFU3oA2gWR0CgCkhje9BbdX2UKGgGaAloD0MIGjBI+rQIXUCUhpRSlGgVTegDaBZHQKAKRTuv2Xd1fZQoaAZoCWgPQwihnj4Cfy1cQJSGlFKUaBVN6ANoFkdAoCAHS2H+InV9lChoBmgJaA9DCJpC5zV2nlxAlIaUUpRoFU3oA2gWR0CgIAQjdHlPdX2UKGgGaAloD0MIDFcHQNzFW0CUhpRSlGgVTegDaBZHQKAnnOmBOHp1fZQoaAZoCWgPQwgeM1AZ/9pcQJSGlFKUaBVN6ANoFkdAoCeZwqAjIXV9lChoBmgJaA9DCOUNMPMd4FxAlIaUUpRoFU3oA2gWR0CgLrwI2OyWdX2UKGgGaAloD0MIx9l0BPCJYECUhpRSlGgVTegDaBZHQKAuuOAAhjh1fZQoaAZoCWgPQwjDDfj8MPpcQJSGlFKUaBVN6ANoFkdAoDZwlpoK2XV9lChoBmgJaA9DCFfMCG8PUmBAlIaUUpRoFU3oA2gWR0CgNm1t4zJqdX2UKGgGaAloD0MIEVSNXg3uXkCUhpRSlGgVTegDaBZHQKA89K6nR9h1fZQoaAZoCWgPQwiXkXpP5XpcQJSGlFKUaBVN6ANoFkdAoDzxhx5s03V9lChoBmgJaA9DCPRuLCgM019AlIaUUpRoFU3oA2gWR0CgQ1XoC+10dX2UKGgGaAloD0MIsqGb/YFVXUCUhpRSlGgVTegDaBZHQKBDUsFt8/l1fZQoaAZoCWgPQwhFLjiDv0ZdQJSGlFKUaBVN6ANoFkdAoEk8Eq2BrnV9lChoBmgJaA9DCAJmvoMfTmBAlIaUUpRoFU3oA2gWR0CgSTjrZ8KHdX2UKGgGaAloD0MInwCKkSVIYECUhpRSlGgVTegDaBZHQKBPt/WlMyt1fZQoaAZoCWgPQwjK372jxjJdQJSGlFKUaBVN6ANoFkdAoE+0zl90BHV9lChoBmgJaA9DCB4bgXhdK2BAlIaUUpRoFU3oA2gWR0CgVaWF36hydX2UKGgGaAloD0MIWtk+5C3KXUCUhpRSlGgVTegDaBZHQKBVol67dzp1fZQoaAZoCWgPQwgUB9Dv+2ddQJSGlFKUaBVN6ANoFkdAoFvLNQj2SXV9lChoBmgJaA9DCEM6PITxc11AlIaUUpRoFU3oA2gWR0CgW8gJ1JUYdX2UKGgGaAloD0MIkWKARBMrYECUhpRSlGgVTegDaBZHQKBiV9Wp6yB1fZQoaAZoCWgPQwgbSYJwBVFcQJSGlFKUaBVN6ANoFkdAoGJUq+ajOHV9lChoBmgJaA9DCM/1fThIiF1AlIaUUpRoFU3oA2gWR0CgarOhTOxCdX2UKGgGaAloD0MIT1lN15M9YECUhpRSlGgVTegDaBZHQKBqsIZ62OR1fZQoaAZoCWgPQwhNTYI3JEVgQJSGlFKUaBVN6ANoFkdAoHJS4FzMinV9lChoBmgJaA9DCLx2acPhVWBAlIaUUpRoFU3oA2gWR0Cgck+6iCardWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 489,
"n_steps": 1024,
"gamma": 0.9999,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 25,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
} |